Advertisement

Annali di Matematica Pura ed Applicata

, Volume 146, Issue 1, pp 1–13 | Cite as

On the homogenization of quasilinear divergence structure operators

  • N. Fusco
  • G. Moscariello
Article

Summary

We study the homogenization of second order quasilinear operators of the form
$$A_\varepsilon u = - div a\left( {\frac{x}{\varepsilon },u,Du} \right)$$
in Sobolev spaces H1,p (p>1). An explicit formula of the homogenized operator is given.

Keywords

Divergence Structure Sobolev Space Explicit Formula Structure Operator Quasilinear Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Babuska,Solutions of interface problems by homogenization, SIAM J. Math. Anal.,7 (1976), pp. 603–645.Google Scholar
  2. [2]
    I. Babuska,Solutions of interface problems by homogenization, SIAM J. Math. Anal.,8 (1977), pp. 923–937.Google Scholar
  3. [3]
    A.Bensoussan - J. L.Lions, - G.Papanicolau,Asymptotic methods in periodic structures, North Holland, 1978.Google Scholar
  4. [4]
    L.Boccardo - F.Murat,Homogéneization de problèmes quasilinéaires, Proceedings of the Meeting «Studio di problemi limite dell'Analisi Funzionale», Bressanone, 1981; Ed. Pitagora, 1982.Google Scholar
  5. [5]
    L. Carbone -C. Sbordone,Some properties of Γ-limits of integral functionals, Ann. Mat. Pura Appl.,122 (1979), pp. 1–60.Google Scholar
  6. [6]
    E. De Giorgi -S. Spagnolo,Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital.,8 (1973), pp. 391–411.Google Scholar
  7. [7]
    N. Fusco -G. Moscariello,An application of duality to homogenization of integral functionals, Memorie dell'Acc. dei Lincei,17, I (1984), pp. 361–372.Google Scholar
  8. [8]
    D.Gilbarg- N. S.Trudinger Elliptic Partial Differential Equations of Second Order; Springer, 1977, second ed., 1983.Google Scholar
  9. [9]
    P. Marcellini,Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., (4)117 (1978), pp. 139–152.Google Scholar
  10. [10]
    P. Marcellini -C. Sbordone,Homogenization of non uniformly elliptic operators, Applicable Analysis,68 (1978), pp. 101–114.Google Scholar
  11. [11]
    F. Murat,Compacité par compensation, Ann. Scuola Norm. Sup. Pisa,5 (1978), pp. 489–507.Google Scholar
  12. [12]
    U. E. Raitum,On the G-convergence of quasilinear elliptic operators with unbounded coefficients, Sov. Math. Dokl.,24 (1981), pp. 472–475.Google Scholar
  13. [13]
    E. Sanchez Palencia,Nonhomogeneous media and vibration theory, Lecture Notes in Physics 127; Springer, Berlin, 1980.Google Scholar
  14. [14]
    P.Suquet,Plasticité et homogéneization, Thèse, Paris VI, 1982.Google Scholar
  15. [15]
    L.Tartar,Topics in nonlinear Analysis, Publ. Math. d'Orsay,13 (1978).Google Scholar
  16. [16]
    L.Tartar,Homogéneization et compacité par compensation, Séminaire Schwartz Exposé, n. 9 (1978).Google Scholar
  17. [17]
    L.Tartar,Convergence d'operateurs différentiels, Proceedings of the Meeting «Analisi Convessa e Applicazioni»>, Roma, 1974.Google Scholar
  18. [18]
    L.Tartar,Cours Pecot, Collège de France, partiellement rédigé par F.Murat,H-convergence, Séminaire d'Analise Fonctionnelle et Numérique de l'Université d'Alger, 1977–78.Google Scholar
  19. [19]
    N. S. Trudinger,On the Comparison Principle for Quasilinear Divergence Structure Equations, Arch. for Rat. Mech. and Anal.,57 (1974), pp. 128–133.Google Scholar
  20. [20]
    Zhikov-Kozlov-Oleinik-Khat'en Ngoan,Averaging and G-convergence of differential operators, Russian Math. Surveys,34 (1979), pp. 69–147.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1985

Authors and Affiliations

  • N. Fusco
    • 1
  • G. Moscariello
    • 1
  1. 1.Dipartimento di MatematicaUniversitáNapoli

Personalised recommendations