Mathematical systems theory

, Volume 7, Issue 2, pp 185–192 | Cite as

An infinite hierarchy of intersections of context-free languages

  • Leonard Y. Liu
  • Peter Weiner


The class of languages expressible as the intersection ofk context-free languages is shown to be properly contained within the class of languages expressible as the intersection ofk + 1 context-free languages. Hence an infinite hierarchy of classes of languages is exhibited between the class of context-sensitive languages and the class of context-free languages.


Computational Mathematic Infinite Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Bar-Hillel, M. Perles andE. Shamir, On formal properties of simple phrase structure grammars,Z. Phonetik Sprachwiss. Kommunikat. 14 (1961), 142–172.Google Scholar
  2. [2]
    N. Chomsky andM. P. Schützenberger, The algebraic theory of context-free languages,Computer Programming and Formal Systems, North Holland, Amsterdam, 1963, pp. 118–161.Google Scholar
  3. [3]
    J. Evey, “The Theory and Application of Pushdown Store Machines”, Harvard University Doctoral Thesis, 1963.Google Scholar
  4. [4]
    S. Ginsburg,The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966.Google Scholar
  5. [5]
    S. Ginsburg andE. H. Spanier, Bounded ALGOL-like languages,Trans. Amer. Math. Soc. 113 (1964), 333–368.Google Scholar
  6. [6]
    S. Ginsburg andE. H. Spanier, Semigroups, Presburger formulas and languages,Pacific J. Math. 16 (1966), 285–296.Google Scholar
  7. [7]
    S. Y. Kuroda, Classes of languages and linear bounded automata,Information and Control 7 (1964), 207–223.Google Scholar
  8. [8]
    J. Myhill, “Linear bounded automata”,WADD Tech. Note, No. 60-165 Wright Patterson Air Force Base, Ohio, 1960.Google Scholar
  9. [9]
    R. J. Parikh, “Language generating devices”, M.I.T. Res. Lab. Electron Quart Prog. Rept. 60, 1961, pp. 199–212.Google Scholar
  10. [10]
    Leonard Y. Liu, “Finite-Reversal Pushdown Automata,” Ph.D. Dissertation, Princeton University, 1968, pp. 62–63.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • Leonard Y. Liu
    • 1
  • Peter Weiner
    • 2
  1. 1.International Business Machines CorporationYorktown HeightsUSA
  2. 2.Department of Computer ScienceYale UniversityNew HavenUSA

Personalised recommendations