Quaternionic structures on a manifold and subordinated structures
Article
- 204 Downloads
- 50 Citations
Keywords
Quaternionic Structure Subordinate Structure
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]D. V. Alekseevsky,Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR-Izv.,9 (1975), pp. 297–339.Google Scholar
- [2]D. V. Alekseevsky,Conformai mappings of G-structures, Funct. Anal. Appl.,22 (1988), pp. 311–313.Google Scholar
- [3]D. V.Alekseevsky - M. M.Graev,G-structures of twistor type, Preprint Dip. Mat. Univ. «La Sapienza», Roma (1991);J. Geom. Phys.,10 (1993) no. 3, pp. 203–229.Google Scholar
- [4]D. V. Alekseevsky -S. Marchiafava,Quaternionic-like structures on a manifold. — Note I. 1-integrability and integrability conditions. — Note II. Automorphism groups and their interrelations, Rend. Mat. Acc. Lincei, s. 9, v. 4 (1993), pp. 43–52, 53–61.Google Scholar
- [5]D. V. Alekseevsky -S. Maechiafava,A report on quaternionic-like structures on a manifold, inProceedings of the International Workshop on Differential Geometry and its Applications, Bucarest, July 25–30 1993, Scientific Bulletin UPB, 55, no. 3–4 (1993), pp. 9–34.Google Scholar
- [6]D. V. Alekseevsky -S. Marchiafava,Almost quaternionic Hermitian and quasi-Kähler manifolds, inProceedings of the International Workshop on complex structures and vector fields,Sofia,August 20–25 1992, pp. 150–175, Ed. World Scientific, World Scientific, Singapore (1994).Google Scholar
- [7]M.Berger,Les groupes d'holonomie homogène des variétés affines et des variétés riemanniennes, Bull. Soc. Math. France (1955), pp. 279–330.Google Scholar
- [8]D. Bernard,Sur la géométrie différentielle des G-structures, Ann. Inst. Fourier (Grenoble),10 (1960), pp. 151–270.Google Scholar
- [9]A. Besse,Einstein Manifolds, Ergebnisse der Math., 3 Folge, Band 10, Springer-Verlag, Berlin and New York (1987).Google Scholar
- [10]D.Blair,Contact Manifolds in Riemannian Geometry, Lectures Notes in Math., n. 509.Google Scholar
- [11]E. Bonan,Sur les G-structures de type quaternionien, Cah. Topol. Géom. Diff.,9 (1967), pp. 389–461.Google Scholar
- [12]S. S.Chern,On a generalisation of Kähler geometry, inSymposium in Honor of S. Lefschetz on Algebraic Geometry and Topology, Princeton University Press (1957) (Princeton Mathematical Series,18), pp. 103–121.Google Scholar
- [13]S. S. Chern,The geometry of G-structures, Bull. Amer. Math. Soc.,72 (1966), pp. 167–219.Google Scholar
- [14]S. Fujimura,Q-connections and their changes on almost quaternion manifolds, Hokkaido Math. J.,5 (1976), pp. 239–248.Google Scholar
- [15]R. S. Kulkarni,On the principle of uniformisation, J. Diff. Geom.,13 (1978), pp. 109–138.Google Scholar
- [16]C. Le Brun -S. Salamon,Strong rigidity of positive quaternionic-Kähler manifolds, Invent. Math.,118 (1994), pp. 109–132.Google Scholar
- [17]E. Martinelli,Variétés à structure quaternionienne généralisée, Rev. Roum. Math. Pures Appl., Tome X, n. 7 (1965), pp. 915–922.Google Scholar
- [18]E. Musso,On the transformation group of a quaternion manifold, Boll. U.M.I., (7), 6-B (1992), pp. 67–78.Google Scholar
- [19]M. Obata,Affine connections on Manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math.,26 (1956), p. 43.Google Scholar
- [20]V. Oproiu,Almost quaternal structures, An. st. Univ. Iazi,23 (1977), pp. 287–298.Google Scholar
- [21]V. Oproiu,Integrability of almost quaternal structures, An. st. Univ. «Al. I. Cuza» Iazi,30 (1984), pp. 75–84.Google Scholar
- [22]P. Piccinni,On the infinitesimal automorphisms of quaternionic structures, J. Math. Pures Appl.,72 (1993), pp. 593–605.Google Scholar
- [23]P. Piccinni -G. Romani,A generalisation of symplectic Pontrjagin classes to vector bundles with structure group Sp(n)·Sp(1), Ann. Mat. Pura Appl. (IV),33 (1983), pp. 1–18.Google Scholar
- [24]M. Pontecorvo,Complex structures on quaternionic manifolds, Diff. Geom. Appl.,4 (1994), pp. 163–177.Google Scholar
- [25]S. Salamon,Differential geometry of quaternionic manifolds, Ann. Scient. Ec. Norm. Sup., 4ème série,19 (1986), pp. 31–55.Google Scholar
- [26]S. Salamon,Riemannian Geometry and Holonomy Groups, Ed. Longman Scientific & Technical, UK (1989).Google Scholar
- [27]S.Sternberg,Lectures in Differential Geometry, Prentice-Hall (1964).Google Scholar
- [28]A. Swann,HyperKähler and quaternionic Kähler geometry, Math. Ann.,289 (1991), pp. 421–450.Google Scholar
- [29]K. Yano -M. Ako,Integrability conditions for almost quaternionic structures, Hokkaido Math. J.,1 (1972), pp. 63–86.Google Scholar
- [30]K. Yano -M. Ako,An affine connection in an almost quaternionic manifold, J. Diff. Geom.,8 (1973), pp. 341–347.Google Scholar
Copyright information
© Fondazione Annali di Matematica Pura ed Applicata 1996