Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lightlike periodic trajectories in space-times

  • 154 Accesses

  • 10 Citations

Abstract

Let 〈., 〉z be a Lorentz metric on a manifold \(\mathfrak{M} = \mathfrak{M}_0 \times R\) such that \(\mathfrak{M}_0 \) isnot compact. We prove the existence of infinitely many lightlike periodic trajectories in \(\mathfrak{M}\) by using variational methods and Ljusternik-Schnirelman theory.

References

  1. [1]

    V.Benci - D.Fortunato,Periodic trajectories for the Lorentz metric of a static gravitational field, inProc. on «Variational Methods» (H.Berestycki - J. M.Coron - I.Ekeland, Eds.), Paris (June 1988), pp. 413–429.

  2. [2]

    V. Benci -D. Fortunato,On the existence of infinitely many geodesics on space-time manifolds, Adv. Math.,105 (1994), pp. 1–25.

  3. [3]

    V.Benci - D.Fortunato - F.Giannoni,On the existence of periodic trajectories in static Lorentz manifolds with singular boundary, in«Nonlinear Analysis», a tribute in honour of G. Prodi (A.Ambrosetti - A.Marino, Eds.), Quaderni della Scuola Norm. Sup. Pisa (1991), pp. 109–133.

  4. [4]

    V. Benci -D. Fortunato -F. Giannoni,On the existence of geodesics in static Lorentz manifolds with singular boundary, Ann. Scuola Norm. Sup. Pisa, Serie IV,19 (1992), pp. 255–289.

  5. [5]

    A. M. Candela -A. Salvatore,Closed geodesics in Riemannian manifolds with convex boundary, Proc. Roy. Soc. Edinburgh,124A (1994), pp. 1247–1258.

  6. [6]

    D. Fortunato -F. Giannoni -A. Masiello,A Fermat principle for stationary space-times and applications to light rays, J. Geom. Phys.,15 (1995), pp. 159–188.

  7. [7]

    E. Fadell -S. Husseini,Category of loop spaces of open subsets in Euclidean space, Non-linear Anal.,17 (1991), pp. 1153–1161.

  8. [8]

    F. Giannoni -A. Masiello,On the existence of geodesics on stationary Lorentz manifolds with convex boundary, J. Funct. Anal.,101 (1991), pp. 340–369.

  9. [9]

    S. W. Hawking -G. F. Ellis,The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge (1973).

  10. [10]

    W. Klingenberg,Lectures on Closed Geodesics, Springer, Berlin (1978).

  11. [11]

    A. Masiello,Metodi variazionali in geometria Lorentziana, Tesi di Dottorato, Pisa (1991).

  12. [12]

    B. O'Neill,Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., New York (1983).

  13. [13]

    J. T. Schwartz,Nonlinear Functional Analysis, Notes on Math. and Appl., Gordon and Breach, New York (1969).

Download references

Author information

Additional information

Sponsored by M.U.R.S.T. (fondi 60% «Problemi differenziali nonlineari e teoria dei punti critici»; fondi 40% «Equazioni differenziali e calcolo delle variazioni»).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Candela, A.M. Lightlike periodic trajectories in space-times. Annali di Matematica pura ed applicata 171, 131–158 (1996). https://doi.org/10.1007/BF01759385

Download citation

Keywords

  • Variational Method
  • Periodic Trajectory