Advertisement

Annali di Matematica Pura ed Applicata

, Volume 171, Issue 1, pp 63–81 | Cite as

Isotrivial fibred surfaces

  • Fernando Serrano
Article

Abstract

An isotrivial surface is a smooth projective surface endowed with a morphism onto a curve such that all smooth fibres are isomorphic to each other. Such a surface is birationally isomorphic to a quotient of a product of curves by the action of a finite group. Starting with this birational description, several biregular features are analysed. In particular, the canonical bundle of a particular model is explicitely computed.

Keywords

Finite Group Fibred Surface Projective Surface Canonical Bundle Smooth Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Barth -C. Peters -A. Van De Ven,Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3)4, Springer-Verlag, Berlin (1984).Google Scholar
  2. [2]
    A.Beauville,Surfaces algébriques complexes, Astérisque,54 (1978).Google Scholar
  3. [3]
    P. Deligne,Théorie de Hodge II, Publ. Math. I.H.E.S.,40 (1971), pp. 5–57.Google Scholar
  4. [4]
    H. M. Farkas -I. Kra,Riemann Surfaces, Grad. Texts Math.,71, 2nd edition, Springer-Verlag., Berlin (1992).Google Scholar
  5. [5]
    E. Freitag,Uber die Struktur der Funktionenkörper zu hyperabelschen Gruppen I, J. Reine Angew. Math.,247 (1971), pp. 97–117.Google Scholar
  6. [6]
    A. Fujiki,On resolutions of cyclic quotient singularities, Publ. RIMS, Kyoto Univ.,10 (1974), pp. 293–328.Google Scholar
  7. [7]
    T. Fujita,Impossibility criterion of being an ample divisor., J. Math. Soc. Japan,34 (1982), pp. 355–363.Google Scholar
  8. [8]
    F. Hirzebruch,Uber vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei Veränderlichen, Math. Ann.,126 (1953), pp. 1–22.Google Scholar
  9. [9]
    B. Iversen,Critical points of an algebraic function, Invent. Math.,12 (1971), pp. 210–224.Google Scholar
  10. [10]
    T. Katsura -K. Ueno,On elliptic surfaces in characteristic p, Math. Ann.,272 (1985), pp. 291–330.Google Scholar
  11. [11]
    J. Kollar,Subadditivity of the Kodaira dimension: fibers of general type, Alg. Geom. Sendai, 1985, Adv. Studies Pure Math.,10 (1987), pp. 361–398.Google Scholar
  12. [12]
    M. Levine,Deformations of Irregular Threefolds, Lect. Notes in Math.,947, Springer (1982), pp. 269–286.Google Scholar
  13. [13]
    Y.Miyaoka,Algebraic surfaces with positive indices, inClass of Alg. and Anal Manifolds (K. Ueno ed.). Progress in Math.,39, Birkhaüser (1983).Google Scholar
  14. [14]
    M.Namba,Branched Coverings and Algebraic Functions., Pitman Research Notes in Math. Series, vol. 161, Longman (1987).Google Scholar
  15. [15]
    F. Serrano,The Picard group of a quasi-bundle, Manuscripta Math.,73 (1991), pp. 63–82.Google Scholar
  16. [16]
    F. Serrano,Fibred surfaces and moduli, Duke Math. J.,67(1992), pp. 407–421.Google Scholar
  17. [17]
    H. Tsuji,Stability of tangent bundle of minimal algebraic varieties, Topology,27 (1989), pp. 429–442.Google Scholar
  18. [18]
    G. Van Der Geer,Hilbert Modular Surfaces, Ergeb. Math. Grenzgeb,16, Springer-Verlag, Berlin (1988).Google Scholar
  19. [19]
    G. Xiao,Surfaces fibrées en courbes de genre deux, Lecture Notes in Math.,1137, Springer-Verlag, Berlin (1985).Google Scholar
  20. [20]
    O. Zariski,The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. Math.,76 (1962), pp. 560–615.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1996

Authors and Affiliations

  • Fernando Serrano
    • 1
  1. 1.Departament d'Àlgebra i Geometria, Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations