Annali di Matematica Pura ed Applicata

, Volume 171, Issue 1, pp 63–81 | Cite as

Isotrivial fibred surfaces

  • Fernando Serrano
Article

Abstract

An isotrivial surface is a smooth projective surface endowed with a morphism onto a curve such that all smooth fibres are isomorphic to each other. Such a surface is birationally isomorphic to a quotient of a product of curves by the action of a finite group. Starting with this birational description, several biregular features are analysed. In particular, the canonical bundle of a particular model is explicitely computed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Barth -C. Peters -A. Van De Ven,Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3)4, Springer-Verlag, Berlin (1984).Google Scholar
  2. [2]
    A.Beauville,Surfaces algébriques complexes, Astérisque,54 (1978).Google Scholar
  3. [3]
    P. Deligne,Théorie de Hodge II, Publ. Math. I.H.E.S.,40 (1971), pp. 5–57.Google Scholar
  4. [4]
    H. M. Farkas -I. Kra,Riemann Surfaces, Grad. Texts Math.,71, 2nd edition, Springer-Verlag., Berlin (1992).Google Scholar
  5. [5]
    E. Freitag,Uber die Struktur der Funktionenkörper zu hyperabelschen Gruppen I, J. Reine Angew. Math.,247 (1971), pp. 97–117.Google Scholar
  6. [6]
    A. Fujiki,On resolutions of cyclic quotient singularities, Publ. RIMS, Kyoto Univ.,10 (1974), pp. 293–328.Google Scholar
  7. [7]
    T. Fujita,Impossibility criterion of being an ample divisor., J. Math. Soc. Japan,34 (1982), pp. 355–363.Google Scholar
  8. [8]
    F. Hirzebruch,Uber vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei Veränderlichen, Math. Ann.,126 (1953), pp. 1–22.Google Scholar
  9. [9]
    B. Iversen,Critical points of an algebraic function, Invent. Math.,12 (1971), pp. 210–224.Google Scholar
  10. [10]
    T. Katsura -K. Ueno,On elliptic surfaces in characteristic p, Math. Ann.,272 (1985), pp. 291–330.Google Scholar
  11. [11]
    J. Kollar,Subadditivity of the Kodaira dimension: fibers of general type, Alg. Geom. Sendai, 1985, Adv. Studies Pure Math.,10 (1987), pp. 361–398.Google Scholar
  12. [12]
    M. Levine,Deformations of Irregular Threefolds, Lect. Notes in Math.,947, Springer (1982), pp. 269–286.Google Scholar
  13. [13]
    Y.Miyaoka,Algebraic surfaces with positive indices, inClass of Alg. and Anal Manifolds (K. Ueno ed.). Progress in Math.,39, Birkhaüser (1983).Google Scholar
  14. [14]
    M.Namba,Branched Coverings and Algebraic Functions., Pitman Research Notes in Math. Series, vol. 161, Longman (1987).Google Scholar
  15. [15]
    F. Serrano,The Picard group of a quasi-bundle, Manuscripta Math.,73 (1991), pp. 63–82.Google Scholar
  16. [16]
    F. Serrano,Fibred surfaces and moduli, Duke Math. J.,67(1992), pp. 407–421.Google Scholar
  17. [17]
    H. Tsuji,Stability of tangent bundle of minimal algebraic varieties, Topology,27 (1989), pp. 429–442.Google Scholar
  18. [18]
    G. Van Der Geer,Hilbert Modular Surfaces, Ergeb. Math. Grenzgeb,16, Springer-Verlag, Berlin (1988).Google Scholar
  19. [19]
    G. Xiao,Surfaces fibrées en courbes de genre deux, Lecture Notes in Math.,1137, Springer-Verlag, Berlin (1985).Google Scholar
  20. [20]
    O. Zariski,The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. Math.,76 (1962), pp. 560–615.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1996

Authors and Affiliations

  • Fernando Serrano
    • 1
  1. 1.Departament d'Àlgebra i Geometria, Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations