Annali di Matematica Pura ed Applicata

, Volume 169, Issue 1, pp 375–392

Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian

  • G. Citti


The paper is concerned with the Dirichlet problem
$$ - \Delta _H u + au = u^{{{\left( {q + 2} \right)} \mathord{\left/ {\vphantom {{\left( {q + 2} \right)} {\left( {q - 2} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {q - 2} \right)}}} in \Omega , u = 0 on \partial \Omega $$
where Ω is a smooth, bounded domain in R2n+1H is the Kohn-Laplacian on the Heisenberg group Hn, and q=2n+2 is the homogeneous dimension of Hn. We first prove a representation formula for the Palais Smale sequences of the functional naturally associated to (P). Then we use this expression to prove that, if 0⩾a> - λ11 is the smallest eigenvalue of ΔH), then (P) has at least a nonnegative solution. This theorem extends to this setting a previous result of Brezis and Niremberg for the classical Laplacian.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BC]
    A. Bahari -J. M. Coron, On a linear Elliptic Equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math.,41 (1988), pp. 253–294.Google Scholar
  2. [BeC]
    V. Benci -G. Cerami,Existence of positive solutions of the equation −Δu+a(x)u=u n+2/(n−2), J. Funct. Anal.,88 (1990), pp. 90–117.Google Scholar
  3. [BC]
    H. Brezis -J. M. Coron,Convergence of solutions of H-systems or how to blow up bubbles, Arch. Rat. Mech. Anal,89, 1 (1985), pp. 21–56.Google Scholar
  4. [BL]
    H. Brezis -E. Lieb,A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.,88 (1987), pp. 486–490.Google Scholar
  5. [BN]
    H. Brezis - Nirenberg,Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math.,36 (1983), pp. 337–377.Google Scholar
  6. [BS]
    M. S. Berger -M. Schechter,Embedding theorems and quasilinear elliptic boundary value problems for unbounded domains, Trans. Amer. Math. Soc.,78 (1972), pp. 261–278.Google Scholar
  7. [CD]
    G.Citti - G.Di Fazio,Hölder of the solutions for the operators sum of squares of vectorfields plus a potential, preprint.Google Scholar
  8. [CGL]
    G.Citti - N.Garofalo - E.Lanconelli,Harnack's inequality for sum of squares a potential, to appear on Amer. J. Math.Google Scholar
  9. [EL]
    M. J. Esteban -P. L. Lions,Existence and non existence results for semilinear elliptic problems in unbounded domains, Proc. Royal Edinburgh Soc.,93-A (1982), pp. 1–14.Google Scholar
  10. [GL]
    N.Garofalo - E.Lanconelli,Existence and nonexistence results for semilinear equations on the Heisenberg group, to appear on Indiana Univ. Math. J.Google Scholar
  11. [F1]
    G. B. Folland,A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc.,79, n. 2 (1973), pp. 373–376.Google Scholar
  12. [F2]
    G. B. Folland,Subelliptic estimates and function spaces on nihilpotent Lie groups, Ark. Math.,13 (1975), pp. 161–207.Google Scholar
  13. [FS1]
    G. B. Folland -E. M. Stein,Estimates for the d complex and analysis on the Heisenberg group, Comm. Pure Appl. Math.,27 (1974), pp. 429–522.Google Scholar
  14. [FS2]
    G. B. Folland -E. M. Stein,Hardy Spaces on Homogeneous Groups, Math. Notes n. 28, Princeton University Press, Princeton, N.J. (1982).Google Scholar
  15. [J]
    D. S. Jerison,The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, J. Func. Anal.,43 (1981), pp. 97–142.Google Scholar
  16. [JL1]
    D. S. Jerison -J. M. Lee,Intrinsic CR coordinates and the CR Yamabe problem, J. Diff. Geom.,29 (1981), pp. 303–343.Google Scholar
  17. [JL2]
    D. S. Jerison -J. M. Lee,Extremals of the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc.,1 (1988), pp. 1–13.Google Scholar
  18. [L1]
    P. L. Lions,Application de la méthode de concentration — compacité à l'existence de fonctions extrémales, C. R. Acad. Sc. Paris,296 (1983), pp. 645–664.Google Scholar
  19. [L2]
    P. L. Lions,The concentration-compactness principles in the calculus of variations. The limit case, Rev. Mat. Iberoamericana,1 (1985), pp. 45–121, 145–201.Google Scholar
  20. [P]
    S. I. Pohozaev,Eigenfunctions of the equation Δu+λf(u)=0, Soviet Math. Doklady,6 (1965), pp. 1408–1411; (translated from the Russian Dokl. Akad. Nauk SSSR,165 (1965), pp. 33–36.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1995

Authors and Affiliations

  • G. Citti
    • 1
  1. 1.Univ. di BolognaBolognaItaly

Personalised recommendations