Annali di Matematica Pura ed Applicata

, Volume 164, Issue 1, pp 133–154 | Cite as

A rigorous stability result for the Vlasov-Poisson system in three dimensions

  • Jürgen Batt
  • Gerhard Rein
Article

Abstract

It is proven that in a neutral two-component plasma with space homogeneous positively charged background, which is governed by the Vlasov-Poisson system and for which Poisson's equation is considered on a cube inR3 with periodic boundary conditions, the space homogeneous stationary solutions g with energy gradient ∂g/∂ε ≤ 0 and compact support are (nonlinearly) stable in the L1-norm with respect to weak solutions of the initial value problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. A. Antonov,Solution of the problem of stability of a stellar system with the Emden density law and spherical velocity distribution, J. Leningrad Univ., no.7, Ser. Math., Mekh. Astro., no.2 (1962), pp. 135–146.Google Scholar
  2. [2]
    A. A. Arsen'ev,Global existence of a weak solution of Vlasov's system of equations, U.S.S.R. Comput. Math. Math. Phys.,15, no. 1 (1975), pp. 131–143.Google Scholar
  3. [3]
    C. Bardos -P. Degond,Global existence for the Vlasov-Poisson equation in 3space variables with small initial data, Ann. Inst. Henri Poincaré, Analyse non linéaire,2 (1985), pp. 101–118.Google Scholar
  4. [4]
    J. Barnes -J. Goodman -P. Hut,Dynamical instabilities in spherical stellar systems, The Astrophys. J.,300 (1986), pp. 112–131.Google Scholar
  5. [5]
    J. Batt,Global symmetric solutions of the initial value problem of stellar dynamics, J. Diff. Equations,25 (1977), pp. 342–364.Google Scholar
  6. [6]
    J. Batt,Asymptotic properties of spherically symmetric self-gravitating mass systems for t → ∞, Transp. Th. Stat. Phys.,16 (1987), pp. 763–778.Google Scholar
  7. [7]
    J. Batt -H. Berestycki -P. Degond -B. Perthame,Some families of solutions of the Vlasov-Poisson system, Arch. Rat. Mech. Anal.,104 (1988), pp. 79–103.Google Scholar
  8. [8]
    J. Batt -W. Faltenbacher -E. Horst,Stationary spherically symmetric models in stellar dynamics, Arch. Rat. Mech. Anal.,93 (1986), pp. 159–183.Google Scholar
  9. [9]
    J. Batt -K. Pfaffelmoser,On the radius continuity of the models of polytropic gas spheres which correspond to the positive solutions of the generalized Emden-Fowler equation, Math. Meth. Appl. in the Sci.,10 (1988), pp. 499–516.Google Scholar
  10. [10]
    G. Baumann -J. P. Doremus -M. R. Feix,Stability of encounterless spherical stellar systems, Phys. Rev. Lett.,26 (1971), pp. 725–728.Google Scholar
  11. [11]
    J.Binney - S.Tremaine,Galactic Dynamics, Princeton Series in Astrophysics, Princeton University Press (1987).Google Scholar
  12. [12]
    R. J. Di Perna -P.-L. Lions,Solutions globales d'équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris,307, Série I (1988), pp. 655–658.Google Scholar
  13. [13]
    R. J. Di Perna -P.-L. Lions,Global weak solutions of Vlasov-Maxwell systems, Commun. Pure Appl. Math.,42 (1989), pp. 729–757.Google Scholar
  14. [14]
    A. M.Fridman - V. L.Polyachenko,Physics of Gravitating Systems I, Springer-Verlag (1984).Google Scholar
  15. [15]
    K. Ganguly -H. D. Victory Jr.,On the convergence of particle methods for multidimensional Vlasov-Poisson systems, SIAM J. Numer. Anal.,26 (1989), pp. 249–288.Google Scholar
  16. [16]
    R. Glassey -J. Schaeffer,On symmetric solutions of the relativistic Vlasov-Poisson system, Commun. Math. Phys.,101 (1985), pp. 459–473.Google Scholar
  17. [17]
    R. Glassey -J. Schaeffer,Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Commun. Math. Phys.,119 (1988), pp. 353–384.Google Scholar
  18. [18]
    R. Glassey -W. Strauss,Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rat. Mech. Anal.,92 (1986), pp. 59–90.Google Scholar
  19. [19]
    R. Glassey -W. Strauss,High velocity particles in a collisionless plasma, Math. Meth. in the Appl. Sci.,9 (1987), pp. 46–52.Google Scholar
  20. [20]
    R. Glassey -W. Strauss,Absence of shocks in an initially dilute collisionless plasma, Commun. Math. Phys.,113 (1987), pp. 191–208.Google Scholar
  21. [21]
    M. Hénon,Numerical experiments on the stability of spherical stellar systems, Astron. and Astrophys.,24 (1973), pp. 229–238.Google Scholar
  22. [22]
    D. D. Holm -J. E. Marsden -T. Ratiu -A. Weinstein,Nonlinear stability of fluid and plasma equilibria, Physics Reports,123, Nos. 1 and 2 (1985), pp. 1–116.Google Scholar
  23. [23]
    A.Hörmann,Stabilität beim Vlasov-Poisson-System mit periodischen Feldern, Diplomarbeit, Universität München (1989).Google Scholar
  24. [24]
    E.Horst,Zum statistischen Anfangswertproblem der Stellardynamik, Diplomarbeit, Universität München (1975).Google Scholar
  25. [25]
    E. Horst,On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Part I and II, Math. Meth. in the Appl. Sci.,3 (1981), pp. 229–248;4 (1982), pp. 19–32.Google Scholar
  26. [26]
    E.Horst,Global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Habilitationsschrift, Universität München (1986).Google Scholar
  27. [27]
    E. Horst -R. Hunze,Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Meth. Appl. in the Sci.,6 (1984), pp. 262–279.Google Scholar
  28. [28]
    R. Illner -H. Neunzert,An existence theorem for the unmodified Vlasov equation, Math. Meth. Appl. Sci.,1 (1979), pp. 530–554.Google Scholar
  29. [29]
    R. Kurth,A global particular solution to the initial value problem of stellar dynamics, Quarterly Appl. Math.,36 (1978), pp. 325–329.Google Scholar
  30. [30]
    C. Marchioro -M. Pulvirenti,Some considerations on the non-linear stability of stationary Euler flows, Commun. Math. Phys.,100 (1985), pp. 343–354.Google Scholar
  31. [31]
    C. Marchioro -M. Pulvirenti,A note on the nonlinear stability of a spatially symmetric Vlasov-Poisson flow, Math. Meth. in the Appl. Sci.,8 (1986), pp. 284–288.Google Scholar
  32. [32]
    K.Pfaffelmoser,Globale klassische Lösungen des dreidimensionalen Vlasov-PoissonSystems, Dissertation, Universität München (1989).Google Scholar
  33. [33]
    M.Reed - B.Simon,Methods of Modern Mathematical Physics, Vol. II, Academic Press (1975).Google Scholar
  34. [34]
    G. Rein,Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics, Commun. Math. Phys.,135 (1990), pp. 41–78.Google Scholar
  35. [35]
    J. Schaeffer,Global existence for the Poisson-Vlasov system with nearly symmetric data, J. Diff. Equations,69 (1987), pp. 111–148.Google Scholar
  36. [36]
    Y. Sobouti,Linear oscillations of isotropic stellar systems, Astron. and Astrophys.,140 (1984), pp. 82–90.Google Scholar
  37. [37]
    E. C. Titchmarsh,Eigenfunction Expansions Associated with Second-Order Differential Equations, Part II, Clarendon Press, Oxford (1958).Google Scholar
  38. [38]
    E. T. Whitaker -G. N. Watson,A Course in Modern Analysis, University Press, Cambridge (1920).Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1993

Authors and Affiliations

  • Jürgen Batt
    • 1
  • Gerhard Rein
    • 1
  1. 1.Mathematisches Institut der Universität MünchenMünchen 2Germany

Personalised recommendations