Advertisement

Annali di Matematica Pura ed Applicata

, Volume 168, Issue 1, pp 317–354 | Cite as

Existence and multiplicity of homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems

  • Piero Montecchiari
Article

Abstract

We consider the Hamiltonian system q=L(t)q−▽V(t, q) inR m ,L and ▽V being asymptotic, as t→−∞, to certain periodic functions L_, ▽V_. Under suitable assumptions on the functions L, L_, V, V_, we prove for any k∈N, the existence of infinitely many k- bump homoclinic solutions of the Hamiltonian system.

Keywords

Hamiltonian System Periodic Function Homoclinic Orbit Suitable Assumption Homoclinic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.Alama - Y. Y.Li,On Multibump bound states for certain semilinear elliptic equations, Research Report No. 92-NA-012. (1992) Carnegie Mellon University.Google Scholar
  2. [2]
    A.Ambrosetti,Critical points and nonlinear variational problems, Bul. Soc. Math. France,120 (1992).Google Scholar
  3. [3]
    A.Ambrosetti - M. L.Bertotti,Homoclinics for second order conservative systems, inPartial Differential Equations and Related Subjects, (ed. M.Miranda), Pitman Research Note in Math. Ser. (1992).Google Scholar
  4. [4]
    A.Ambrosetti - V.Coti Zelati,Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova to appear.Google Scholar
  5. [5]
    V. Benci -F. Giannoni,Homoclinic orbits on compact manifolds, J. Math. Anal. Appl.,157 (1991), pp. 568–576.Google Scholar
  6. [6]
    S. V. Bolotin,The existence of homoclinic motions, Moskow Univ. Math. Bull.,38-6 (1983), pp. 117–123.Google Scholar
  7. [7]
    P.Caldiroli,Existence and multiplicity of homoclinic orbits for singular potentials on unbounded domain, Proc. Roy. Soc. Edinburgh, to appear.Google Scholar
  8. [8]
    V. Coti Zelati -I. Ekeland -E. Séré,A Variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann.,288 (1990), pp. 133–160.Google Scholar
  9. [9]
    V. Coti Zelati -P. H. Rabinowitz,Homoclinic orbits for second order hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc.,4 (1991), pp. 693–727.Google Scholar
  10. [10]
    V. Coti Zelati -P. H. Rabinowitz,Homoclinic type solutions for a semilinear elliptic PDE on R n, Comm. Pure Appl. Math,45 (1992), pp. 1217–1269.Google Scholar
  11. [11]
    V.Coti Zelati - P. H.Rabinowitz, in preparation.Google Scholar
  12. [12]
    H. Hofer -K. Wisocki,First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann,288 (1990), pp. 483–503.Google Scholar
  13. [13]
    P. L. Lions,The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. Henri Poincaré,1 (1984), pp. 109–145.Google Scholar
  14. [14]
    P. L. Lions,The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. Henri Poincaré,1 (1984), pp. 223–283.Google Scholar
  15. [15]
    C. Miranda,Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital.,3 (1940), pp. 5–7.Google Scholar
  16. [16]
    P. H. Rabinowitz,Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburg,114 A (1990), pp. 33–38.Google Scholar
  17. [17]
    P. H. Rabinowitz -K. Tanaka,Some results on connecting orbits for a class of Hamiltonian systems, Math. Z.,206 (1991), pp. 473–479.Google Scholar
  18. [18]
    E. Séré,Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z.,209 (1992), pp. 27–42.Google Scholar
  19. [19]
    E.Séré,Looking for the Bernoulli shift, preprint CEREMADE (1992).Google Scholar
  20. [20]
    E.Séré,Homoclinic orbits on compact hypersurfaces in R 2m,of restricted contact type, preprint CEREMADE (1992).Google Scholar
  21. [21]
    K. Tanaka,Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of Subharmonic orbits, J. Diff. Equations,94 (1991), pp. 315–339.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1995

Authors and Affiliations

  • Piero Montecchiari
    • 1
  1. 1.SISSATriesteItaly

Personalised recommendations