, Volume 6, Issue 1–6, pp 685–697 | Cite as

Parallel computation of disease transforms

  • Otfried Schwarzkopf


Distance transforms are an important computational tool for the processing of binary images. For ann ×n image, distance transforms can be computed in time\(\mathcal{O}\)(n) on a mesh-connected computer and in polylogarithmic time on hypercube related structures. We investigate the possibilities of computing distance transforms in polylogarithmic time on the pyramid computer and the mesh of trees. For the pyramid, we obtain a polynomial lower bound using a result by Miller and Stout, so we turn our attention to the mesh of trees. We give a very simple\(\mathcal{O}\)(logn) algorithm for the distance transform with respect to theL1-metric, an\(\mathcal{O}\)(log2n) algorithm for the transform with respect to theL-metric, and find that the Euclidean metric is much more difficult. Based on evidence from number theory, we conjecture the impossibility of computing the Euclidean distance transform in polylogarithmic time on a mesh of trees. Instead, we approximate the distance transform up to a given error. This works for anyL k -metric and takes time\(\mathcal{O}\)(log3n).

Key words

Distance transform Skeleton computation Voronoi diagram Mesh of trees Pyramid computer Image processing Parallel computational geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn, editor,Models for the Perception of Speech and Visual Form, pages 362–380, MIT Press, Cambridge, Mass., 1967.Google Scholar
  2. [2]
    A. Rosenfeld and J. L. Pfalz. Sequential operations in digital picture processing.Journal of the ACM,13(4):471–494, October 1966.zbMATHCrossRefGoogle Scholar
  3. [3]
    P.-E. Danielsson. A new shape factor.Computer Graphics and Image Processing,7:292–299, 1978.CrossRefGoogle Scholar
  4. [4]
    T. Matsuyama and T.-Y. Phillips. Digital realization of the labeled Voronoi diagram and its application to closed boundary detection. InProc. Seventh International Conference on Pattern Recognition, pages 478–480, 1984.Google Scholar
  5. [5]
    M. A. Fischler and P. Barrett. An iconic transform for sketch completion and shape abstraction.Computer Vision, Graphics, and Image Processing,13:334–360, 1980.CrossRefGoogle Scholar
  6. [6]
    P.-E. Danielsson. Euclidean distance mapping.Computer Graphics and Image Processing,14:227–248, 1980.CrossRefGoogle Scholar
  7. [7]
    C. Arcelli and G. Sanniti di Baja. A width-independent fast thinning algorithm.IEEE Transactions on Pattern Analysis and Machine Intelligence,7(4):463–474, July 1985.CrossRefGoogle Scholar
  8. [8]
    C. Arcelli and G. Sanniti di Baja. Computing Voronoi diagrams in digital pictures.Pattern Recognition Letters,4:383–389, 1986.CrossRefGoogle Scholar
  9. [9]
    U. Montanari. A method for obtaining skeletons using a quasi-euclidean distance.Journal of the ACM,15(4): 600–624, October 1968.CrossRefGoogle Scholar
  10. [10]
    G. Borgefors. Distance transformations in arbitrary dimensions.Computer Vision, Graphics, and Image Processing,27:321–345, 1984.CrossRefGoogle Scholar
  11. [11]
    S. L. Tanimoto. A pyramidal approach to parallel processing. InProc. 1983 International Symposium on Computer Architecture, pages 421–429, 1983.Google Scholar
  12. [12]
    L. Uhr.Algorithm-Structured Computer Arrays and Networks. Academic Press, Orlando, Fla., 1984.zbMATHGoogle Scholar
  13. [13]
    L. Uhr, editor.Parellel Computer Vision. Academic Press, Orlando, Fla., 1987.Google Scholar
  14. [14]
    C. R. Dyer and A. Rosenfeld. Triangle cellular automata.Information and Control,48:54–69, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    C. R. Dyer. A VLSI pyramid machine for hierarchical parallel image processing. InProc. IEEE Conference on Pattern Recognition and Image Processing, pages 381–386, 1981.Google Scholar
  16. [16]
    R. Miller and Q. F. Stout. Pyramid computer algorithms for determining geometric properties of images. InProc. First Symposium on Computational Geometry, pages 263–271, 1985.Google Scholar
  17. [17]
    R. Miller and Q. F. Stout. Data movement techniques for the pyramid computer.SIAM Journal on Computing,16(1):38–60, February 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Q. F. Stout. Pyramid computer solutions of the closest pair problem.Journal of Algorithms,6:200–212, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    F. T. Leighton. New-lower bound techniques for VLSI. InProc. 22nd Symposium on Foundations of Computer Science, pages 1–12, 1981.Google Scholar
  20. [20]
    V. K. Prasanna Kumar and M. M. Eshaghian. Parallel geometric algorithms for digitized pictures on mesh of trees. InProc. International Conference on Parallel Processing, pages 270–273, 1986.Google Scholar
  21. [21]
    D. Nath, S. N. Maheshwari, and P. C. P. Bhat. Efficient VLSI networks for parallel processing based on orthogonal trees.IEEE Transactions on Computers,32:569–581, 1983.zbMATHCrossRefGoogle Scholar
  22. [22]
    J. D. Ullman.Computational Aspects of VLSI. Computer Science Press, Rockville, Md., 1984.Google Scholar
  23. [23]
    M.-D. A. Huang. Solving some graph problems with optimal or near-optimal speedup on mesh-of-trees network. InProc. 26th Symposium on Foundations of Computer Science, pages 232–240, 1985.Google Scholar
  24. [24]
    O. Schwarzkopf. Parallel computation of discrete Voronoi diagrams. In B. Monien and R. Cori, editors,Proc. Sixth Annual Symposium on Theoretical Aspects of Computer Science, pages 193–204, Springer-Verlag, Berlin, February 1989.Google Scholar
  25. [25]
    G. Voronoi. Nouvelles applications des parametres continues á la théorie des formes quadratiques.Journal für die Reine und Angewandte Mathematik,134:198–287, 1908.zbMATHCrossRefGoogle Scholar
  26. [26]
    F. P. Preparata and M. I. Shamos.Computational Geometry. Springer-Verlag, New York, 1985.Google Scholar
  27. [27]
    D. T. Lee. Two-dimensional Voronoi diagrams in theL p-metric.Journal of the ACM,27:604–618, October 1980.zbMATHCrossRefGoogle Scholar
  28. [28]
    H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.zbMATHGoogle Scholar
  29. [29]
    A. Aggarwal, B. Chazelle, L. Guibas, C. Ó'Dúnlaing, and C. K. Yap. Parallel computational geometry.Algorithmica,3:293–327, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    N. Dadoun and D. G. Kirkpatrick. Parallel processing for efficient subdivision search. InProc. Third Symposium on Computational Geometry, pages 205–214, 1987.Google Scholar
  31. [31]
    C. F. Gauss.Disquisitiones arithmeticae. Leipzig, 1801 (English edition: Springer-Verlag, New York, 1986).Google Scholar
  32. [32]
    F. Fricker.Einführung in die Gitterpunktlehre. Birkhäuser, Basel, 1982.zbMATHGoogle Scholar
  33. [33]
    E. Hlawka.Theorie der Gleichverteilung. Bibliographisches Institut, Mannheim, 1979.zbMATHGoogle Scholar
  34. [34]
    P. D. T. A. Elliot.Probabilistic Number Theory I, Mean Value Theorems. Springer-Verlag, New York, 1979.Google Scholar
  35. [35]
    Hua Loo Keng and Wang Yuan.Applications of Number Theory to Numerical Analysis. Springer-Verlag, Berlin, 1981.zbMATHGoogle Scholar
  36. [36]
    F. Dehne and J.-R. Sack. A survey of parallel computational geometry algorithms. InProc. Fourth International Workshop on Parallel Processing by Cellular Automata and Arrays, pages 73–88, Akademie-Verlag, Berlin, 1988.Google Scholar
  37. [37]
    Chang-Sung Jeong and D. T. Lee. Parallel geometric algorithms on mesh-connected computers. InProc. 1987 Fall Joint Computer Conference, pages 311–318, 1987.Google Scholar
  38. [38]
    Mi Lu. Constructing the Voronoi diagram on a mesh-connected computer. InInternational Conference on Parallel Processing, pages 806–811, 1986.Google Scholar
  39. [39]
    A. Rosenfeld. Parallel image processing using cellular arrays.IEEE Computer,16(1): 14–20, 1983.Google Scholar
  40. [40]
    S. H. Unger. A computer oriented toward spatial problems.Proc. IRE,46:1744–1750, 1958.CrossRefGoogle Scholar
  41. [41]
    S. H. Unger. Pattern detection and recognition.Proc. IRE,47:1737–1752, 1959.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Otfried Schwarzkopf
    • 1
  1. 1.FB MathematikFreie Universität BerlinBerlin 33Germany

Personalised recommendations