Advertisement

Annali di Matematica Pura ed Applicata

, Volume 170, Issue 1, pp 329–357 | Cite as

Some results on surface measures in calculus of variations

  • G. Bellettini
  • M. Paolini
  • S. Venturini
Article

Abstract

We study some relations between the concepts of perimeter, Hausdorff measure, and Minkowsky content, whenRNis endowed with a convex Finsler metric depending in a continuous way on the position. We show some connections with the theory of Γ-convergence and with the anisotropic motion of a smooth hypersurface by mean curvature.

Keywords

Surface Measure Hausdorff Measure Smooth Hypersurface Anisotropic Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Abraham -J. E. Marsden -T. Ratiu,Manifolds, Tensor Analysis, and Applications, Addison-Wesley, Reading, Mass. (1983).Google Scholar
  2. [2]
    M. Amar -G. Bellettini,A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poinearé Anal. Non Linéaire,11 (1993), pp. 91–133.Google Scholar
  3. [3]
    M. Amar -G. Bellettini,Approximation by Γ-convergence of a total variation with discontinuous coefficients, Asymptotic Anal.,10 (1995), pp. 225–243.Google Scholar
  4. [4]
    G. S. Asanov,Finsler Geometry. Relativity and Gauge Theories, D. Reidel Publishing Company, Dordrecht (1985).Google Scholar
  5. [5]
    A. C. Barroso -I. Fonseca,Anisotropic singular perturbations.—The vectorial case, Proc. Royal Soc. Edinburgh,124A (1994), pp. 527–571.Google Scholar
  6. [6]
    A. Benjancu,Finsler Geometry and Applications, Ellis Horwood Limited, Chichester (1990).Google Scholar
  7. [7]
    G.Bellettini - M.Paolini,Anisotropic motion by mean curvature in the context of Finsler geometry, preprint Univ. of Bologna (1994), to appear on Hokkaido Mathematical Journal.Google Scholar
  8. [8]
    G. Bellettini -M. Paolini,Quasi-optimal error estimates for the mean curvature flow with a forcing term, Differential Integral Equations, 8, No. 4 (1995), pp. 735–752.Google Scholar
  9. [9]
    G. Bouchitté,Singular perturbations of variational problems arising from a two-phase transition model, Appl. Math. Opt.,21 (1990), pp. 289–315.Google Scholar
  10. [10]
    Y. D. Burago -V. A. Zalgaller,Geometric Inequalities (Grundleheren Math. Wiss., Bd. 285), Springer, Berlin, Heidelberg, New York (1988).Google Scholar
  11. [11]
    H. Busemann,Intrinsic area, Ann. Math.,48 (1947), pp. 234–267.Google Scholar
  12. [12]
    H. Busemann,A theorem on convex bodies of the Brunn-Minkowsky type, Proc. Nat. Acad. Sci. U.S.A.,35 (1949), pp. 27–31.Google Scholar
  13. [13]
    H. Busemann -W. Mayer,On the foundations of calculus of variations, Trans. Amer. Math. Soc,49 (1941), pp. 173–198.Google Scholar
  14. [14]
    G. Buttazzo,Semicontinuity, Relaxation and Integral Representation in the Calculus of Variation, Longman Scientific & Technical, Harlow (1989).Google Scholar
  15. [15]
    Y. G. Chen -Y. Giga -S. Goto,Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom.,33 (1991), pp. 749–786.Google Scholar
  16. [16]
    G. Dal Maso,An Introduction to Γ-Convergence, Birkhäuser, Boston (1993).Google Scholar
  17. [17]
    E. De Giorgi -T. Franzoni,Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8),58 (1975), pp. 842–850.Google Scholar
  18. [18]
    E. De Giorgi -T. Franzoni,Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia,3 (1979), pp. 63–101.Google Scholar
  19. [19]
    L. C.Evans - R. F.Gariepy,Measure Theory and Fine Properties of Functions, CRC Press (1992).Google Scholar
  20. [20]
    H. Federer,Geometric Measure Theory, Springer-Verlag, Berlin (1968).Google Scholar
  21. [21]
    I. Fonseca,The Wulff theorem revisited, Proc. Roy. Soc. London Ser. A,432 (1991), pp. 125–145.Google Scholar
  22. [22]
    I. Ponseca -S. Müller,A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. London Ser. A,119 (1991), pp. 125–136.Google Scholar
  23. [23]
    E. Giusti,Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston (1984).Google Scholar
  24. [24]
    M. E. Gurtin,Towards a nonequilibrium thermodynamics of two-phase materials, Arch. Rational Mech. Anal.,100 (1988), pp. 275–312.Google Scholar
  25. [25]
    S. Luckhaus -L. Modica,The Gibbs-Thomson relation within the gradient theory of phase transitions, Arch. Rational Mech. Anal.,107, no. 1 (1989), pp. 71–83.Google Scholar
  26. [26]
    E. Lutwak,Selected Affine-Isoperimetric Inequalities, Handbook of Convex Geometry (P. M. Gruber andJ. N. Wills, eds.), North-Holland, Amsterdam (1993), pp. 151–176.Google Scholar
  27. [27]
    M. Matsumoto,Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseicha Press, Otsu (1986).Google Scholar
  28. [28]
    L. Modica,Gradient theory of phase transitions with boundary contact energy, Ann. Inst. H. Poincaré Anal. Non Linéaire,4 (1987), pp. 487–512.Google Scholar
  29. [29]
    L. Modica,The gradient theory of phase transitions and minimal interfaces criterion, Arch. Rational Mech. Anal.,98 (1987), pp. 123–142.Google Scholar
  30. [30]
    L. Modica -S. Mortola,Un esempio di г-convergenza, Boll. Un. Mat. Ital., B (5),14 (1977), pp. 285–299.Google Scholar
  31. [31]
    N. Owen,Non convex variational problems with general singular perturbations, Trans. Amer. Math. Soc,310 (1988), pp. 393–404.Google Scholar
  32. [32]
    N. Owen -P. Sternberg,Non convex variational problems with anisotropic perturbations, Nonlinear Anal.,16 (1991), pp. 705–719.Google Scholar
  33. [33]
    Yu. G. Reshetnyak,Weak convergence of completely additive functions on a set, Siberian Math. J.,9 (1968), pp. 1039–1045.Google Scholar
  34. [34]
    R. T. Rockafellar,Convex Analysis, Princeton University Press, Princeton, New Jersey (1972).Google Scholar
  35. [35]
    R.Schneider,Convex Bodies: the Brunn-Minkowsky Theory, Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press (1993).Google Scholar
  36. [36]
    Z.Shen,Length and Finsler manifolds with curvature bounded from below, preprint.Google Scholar
  37. [37]
    J. Taylor,Mean curvature and weighted mean curvature II, Acta Metall.,40 (1992), pp. 1475–1485.Google Scholar
  38. [38]
    S.Venturini,Derivations of distance functions in R n, preprint.Google Scholar
  39. [39]
    A. I. Vol'pert,The space BV and quasilinear equations, Math. USSR Sbornik,2 (1967), pp. 225–267.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1996

Authors and Affiliations

  • G. Bellettini
    • 1
  • M. Paolini
    • 2
  • S. Venturini
    • 3
  1. 1.Istituto di Matematiche Applicate «U. Dini»Università di PisaPisaItaly
  2. 2.Dipartimento di MatematicaUniversità di MilanoMilanoItaly
  3. 3.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations