Algorithmica

, 7:465

Forests, frames, and games: Algorithms for matroid sums and applications

  • Harold N. Gabow
  • Herbert H. Westermann
Article

Abstract

This paper presents improved algorithms for matroid-partitioning problems, such as finding a maximum cardinality set of edges of a graph that can be partitioned intok forests, and finding as many disjoint spanning trees as possible. The notion of a clump in a matroid sum is introduced, and efficient algorithms for clumps are presented. Applications of these algorithms are given to problems arising in the study of the structural rigidity of graphs, the Shannon switching game, and others.

Key words

Matroid Matroid sum Matroid partitioning Covering Arboricity Packing Bar-and-joint framework Bar-and-body framework Rigidity Shannon switching game 

References

  1. [A]
    M. Aigner,Combinatorial Theory, Springer-Verlag, New York, 1979.MATHGoogle Scholar
  2. [B]
    J. Bruno, Matroids, Graphs and Resistance Networks, Ph.D. Dissertation, Dept. Electrical Engineering, City College of New York, New York, 1967.Google Scholar
  3. [BW1]
    J. Bruno and L. Weinberg, A constructive graph-theoretic solution of the Shannon switching game,IEEE Trans. Circuit Theory,17(1), 1970, 74–81.MathSciNetGoogle Scholar
  4. [BW2]
    J. Bruno and L. Weinberg, The principal minors of a matroid,Linear Algebra Appl.,4, 1971, 17–54.MATHCrossRefMathSciNetGoogle Scholar
  5. [CN]
    N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms,SIAM J. Comput.,14(1), 1985, 210–223.MATHCrossRefMathSciNetGoogle Scholar
  6. [D]
    E. A. Dinic, Algorithm for solution of a problem of maximum flow in a network with power estimation,Soviet Math. Dokl.,11(5), 1970, 1277–1280.Google Scholar
  7. [E1]
    J. Edmonds, Minimum partition of a matroid into independent subsets,J. Res. Nat. Bur. Standards,69B, 1965, 67–72.MathSciNetGoogle Scholar
  8. [E2]
    J. Edmonds, Lehman's switching game and a theorem of Tutte and Nash-Williams,J. Res. Nat. Bur. Standards,69B, 1965, 73–77.MathSciNetGoogle Scholar
  9. [ET]
    S. Even and R. E. Tarjan, Network flow and testing graph connectivity,SIAM J. Comput.,4(4), 1975, 507–518.MATHCrossRefMathSciNetGoogle Scholar
  10. [F]
    G. N. Frederickson, Data structures for on-line updating of minimum spanning trees, with applications,SIAM J. Comput.,14(4), 1985, 781–798.MATHCrossRefMathSciNetGoogle Scholar
  11. [GS]
    H. N. Gabow and M. Stallmann, Efficient algorithms for graphic matroid intersection and parity,Automata, Languages and Programming: 12th Colloquium, Lecture Notes in Computer Science, Vol. 194, W. Brauer, ed., Springer-Verlag, Berlin, 1985, pp. 210–220.Google Scholar
  12. [GT1]
    H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set union,J. Comput. System Sci.,30(2), 1985, 209–221.MATHCrossRefMathSciNetGoogle Scholar
  13. [GT2]
    H. N. Gabow and R. E. Tarjan, A linear-time algorithm for finding a minimum spanning pseudoforest,Inform. Process. Lett.,27(5), 1988, 259–263.MATHCrossRefMathSciNetGoogle Scholar
  14. [GT3]
    H. N. Gabow and R. E. Tarjan, Algorithms for two bottleneck optimization problems,J. Algorithms,9(3), 1988, 411–417.MATHCrossRefMathSciNetGoogle Scholar
  15. [GT4]
    H. N. Gabow and R. E. Tarjan, Almost-optimum speed-ups of algorithms for bipartite matching and related problems,Proc. 20th Annual ACM Symp. on Theory of Computing, 1988, pp. 514–527.Google Scholar
  16. [GGT]
    G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, A fast parametric maximum flow algorithm and applications,SIAM J. Comput.,18(1), 1989, 30–55.MATHCrossRefMathSciNetGoogle Scholar
  17. [G]
    D. Gusfield, Connectivity and edge-disjoint spanning trees,Inform. Process. Lett.,16, 1983, 87–89.MATHCrossRefMathSciNetGoogle Scholar
  18. [HK]
    J. Hopcroft and R. Karp, Ann 5/2 algorithm for maximum matchings in bipartite graphs,SIAM J. Comput.,2(4), 1973, 225–231.MATHCrossRefMathSciNetGoogle Scholar
  19. [I]
    H. Imai, Network-flow algorithms for lower-truncated transversal polymatroids,J. Oper. Res. Soc. Japan,26(3), 1983, 186–210.MATHMathSciNetGoogle Scholar
  20. [IF]
    M. Iri and S. Fujishige, Use of matroid theory in operations research, circuits and systems theory,Internat. J. Systems Sci.,12(1), 1981, 27–54.MATHCrossRefMathSciNetGoogle Scholar
  21. [IR]
    A. Itai and M. Rodeh, The multi-tree approach to reliability in distributed networks,Inform. and Control,79, 1988. 43–59.MATHMathSciNetGoogle Scholar
  22. [KK]
    G. Kishi and Y. Kajitani, Maximally distant trees and principal partition of a linear graph,IEEE Trans. Circuit Theory,16(3), 1969, 323–330.MathSciNetGoogle Scholar
  23. [Lam]
    G. Laman, On graphs and rigidity of plane skeletal structures,J. Engrg. Math.,4(4), 1970, 331–340.MATHCrossRefMathSciNetGoogle Scholar
  24. [Law]
    E. L. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rhinehart, and Winston, New York, 1976.MATHGoogle Scholar
  25. [Le]
    A. Lehman, A solution to the Shannon switching game,J. Soc. Indust. Appl. Math.,12, 1964, 687–725.MATHCrossRefMathSciNetGoogle Scholar
  26. [LY]
    L. Lovász and Y. Yemini, On generic rigidity in the plane,SIAM J. Algebraic Discrete Methods,3, 1982, 91–98.MATHCrossRefMathSciNetGoogle Scholar
  27. [M]
    L. R. Matthews, Bicircular matroids,Quart. J. Math. Oxford,28(2), 1977, 213–228.MATHCrossRefMathSciNetGoogle Scholar
  28. [N]
    C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs,J. London Math. Soc.,36, 1961, 445–450.MATHCrossRefMathSciNetGoogle Scholar
  29. [OIW]
    T. Ohtsuki, Y. Ishizaki, and H. Watanabe, Topological degrees of freedom and mixed analysis of electrical networks,IEEE Trans. Circuit Theory,17(4), 1970, 491–499.MathSciNetCrossRefGoogle Scholar
  30. [PQ]
    J.-C. Picard and M. Queyranne, A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory,Networks,12, 1982, 141–159.MATHCrossRefMathSciNetGoogle Scholar
  31. [R]
    A. Recski,Matroid Theory and Its Applications in Electric Network Theory and in Statics, Springer-Verlag, New York, 1989.Google Scholar
  32. [RT]
    J. Roskind and R. E. Tarjan, A note on finding minimum-cost edge-disjoint spanning trees,Math. Oper. Res.,10(4), 1985, 701–708.MATHMathSciNetGoogle Scholar
  33. [S]
    B. Servatuis, Birigidity in the plane,SIAM J. Discrete Math.,2(4), 1989, 582–589.CrossRefMathSciNetGoogle Scholar
  34. [ST]
    D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees,J. Comput. System Sci.,26, 1983, 362–391.MATHCrossRefMathSciNetGoogle Scholar
  35. [Tar]
    R. E. Tarjan,Data Structures and Network Algorithms, SIAM Monograph, Philadelphia, PA, 1983.Google Scholar
  36. [Tay]
    T.-S. Tay, Rigidity of multi-graphs. I. Linking rigid bodies inn-space,J. Combin. Theory Ser. B,36, 1984, 95–112.MATHCrossRefMathSciNetGoogle Scholar
  37. [Tu]
    W. T. Tutte, On the problem of decomposing a graph into connected factors,J. London Math. Soc.,36, 1961, 221–230.MATHCrossRefMathSciNetGoogle Scholar
  38. [Wel]
    D. J. A. Welsh,Matroid Theory, Academic Press, New York, 1976.MATHGoogle Scholar
  39. [Wes]
    H. H. Westermann, Efficient Algorithms for Matroid Sums, Ph.D. Dissertation, Dept. Computer Science, University of Colorado at Boulder, Boulder, CO, 1987.Google Scholar
  40. [WW]
    N. White and W. Whiteley, The algebraic geometry of motions of bar-and-body frameworks,SIAM J. Algebraic Discrete Methods,8(1), 1987, 1–32.MATHCrossRefMathSciNetGoogle Scholar
  41. [Wh]
    W. Whiteley, The union of matroids and the rigidity of frameworks,SIAM J. Discrete Math.,1(2), 1988, 237–255.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Harold N. Gabow
    • 1
  • Herbert H. Westermann
    • 2
  1. 1.Department of Computer ScienceUniversity of Colorado at BoulderBoulderUSA
  2. 2.Department 3228IBM LaboratoriesBöblingenGermany

Personalised recommendations