, Volume 7, Issue 1–6, pp 433–464 | Cite as

Maintaining bridge-connected and biconnected components on-line

  • Jeffery Westbrook
  • Robert E. Tarjan


We consider the twin problems of maintaining the bridge-connected components and the biconnected components of a dynamic undirected graph. The allowed changes to the graph are vertex and edge insertions. We give an algorithm for each problem. With simple data structures, each algorithm runs inO(n logn +m) time, wheren is the number of vertices andm is the number of operations. We develop a modified version of the dynamic trees of Sleator and Tarjan that is suitable for efficient recursive algorithms, and use it to reduce the running time of the algorithms for both problems toO(mα(m,n)), where α is a functional inverse of Ackermann's function. This time bound is optimal. All of the algorithms useO(n) space.

Key words

On-line algorithms Graph algorithms Graph connectivity Dynamic trees Data structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Awerbuch and Y. Shiloach. New connectivity and msf algorithms for shuffle-exchange network and PRAM.IEEE Trans. Comput.,36:1258–1263, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    G. D. Battista and R. Tamassia. Incremental planarity testing.Proc. 30th IEEE Symposium on Foundations of Computer Science, pages 436–441, 1989.Google Scholar
  3. [3]
    G. D. Battista and R. Tamassia. On-line graph algorithms with spqr-trees.Proc. 17th Internat. Conf. on Automata, Languages, and Programming (ICALP 1990). Lecture Notes in Computer Science, vol. 443, pages 598–611. Springer-Verlag, Berlin, 1990.Google Scholar
  4. [4]
    N. Blum. On the single-operation worst-case time complexity of the disjoint set union problem.SIAM J. Comput., 15:1021–1024, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    G. A. Cheston. Incremental Algorithms in Graph Theory. Ph.D. thesis, Dept. of Computer Science, University of Toronto, 1976. Technical Report No. 91.Google Scholar
  6. [6]
    S. Even and Y. Shiloach. An on-line edge deletion problem.J. Assoc. Comput. Mach.,28:1–4, 1981.zbMATHMathSciNetGoogle Scholar
  7. [7]
    G. N. Frederickson. Data structures for on-line updating of minimum spanning trees, with applications.SIAM J. Comput.,14:781–798, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. L. Fredman and M. E. Saks. The cell probe complexity of dynamic data structures.Proc. 21st ACM Symposium on Theory of Computing, pages 345–354, Seattle, WA, May 1989.Google Scholar
  9. [9]
    J. Hopcroft and R. E. Tarjan. Algorithm 447: Efficient algorithms for graph manipulation.Comm. ACM,16:372–378, 1973.CrossRefGoogle Scholar
  10. [10]
    R. Karp and V. Ramachandran. Parallel Algorithms for Shared Memory Machines.Handbook of Theoretical Computer Science, Elsevier, Amsterdam, 1990, pages 869–942.Google Scholar
  11. [11]
    J. A. La Poutré. Lower bounds for the union-find and split-find problem on pointer machines.Proc. 22nd ACM Symposium on Theory of Computing, pages 34–44, 1990.Google Scholar
  12. [12]
    J. A. La Poutré, J. van Leeuwen, and M. H. Overmars. Maintenance of 2- and 3-Connected Components of Graphs, Part I: 2- and 3-Edge-Connected Components. Technical Report RUU-CS-90-26, Utrecht University, 1990.Google Scholar
  13. [13]
    J. H. Reif. A topological approach to dynamic graph connectivity.Inform. Process. Lett.,25:65–70, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.J. Comput. System Sci.,26:362–391, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees.J. Assoc. Comput. Mach.,32:652–686, 1985.zbMATHMathSciNetGoogle Scholar
  16. [16]
    R. Tamassia. A dynamic data structure for planar graph embedding.Proc. 15th Internat. Conf. on Automata, Languages, and Programming (ICALP1988). Lecture Notes in Computer Science, vol. 317, pages 576–590. Springer-Verlag, Berlin, 1988.Google Scholar
  17. [17]
    R. Tamassia. Dynamic Data Structures for Two-Dimensional Searching. Ph.D. thesis, Coordinated Science Laboratory, University of Illinois at Urbana-Champagne, 1988. Technical Report ACT-100.Google Scholar
  18. [18]
    R. E. Tarjan. Depth first search and linear graph algorithms.SIAM J. Comput.,1:146–160, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    R. E. Tarjan. Efficiency of a good but not linear set union algorithm.J. Assoc. Comput. Mach.,22:215–225, 1975.zbMATHMathSciNetGoogle Scholar
  20. [20]
    R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets.J. Comput. System Sci.,18:110–127, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    R. E. Tarjan.Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983.Google Scholar
  22. [22]
    R. E. Tarjan. Amortized computational complexity.SIAM J. Algebraic Discrete Methods,6:306–318, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.J. Assoc. Comput. Mach.,31:245–281, 1984.zbMATHMathSciNetGoogle Scholar
  24. [24]
    R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm.SIAM J. Comput.,14:862–874, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    J. Westbrook and R. E. Tarjan. Maintaining Bridge-Connected and Biconnected Components On-Line. Technical Report CS-TR-228-89, Dept. of Computer Science, Princeton University, Princeton, NJ, 1989.Google Scholar
  26. [26]
    A. C. Yao. Should tables be sorted?J. Assoc. Comput. Mach.,28:615–628, 1981.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Jeffery Westbrook
    • 1
  • Robert E. Tarjan
    • 2
    • 3
  1. 1.Department of Computer ScienceYale UniversityNew HavenUSA
  2. 2.Department of Computer SciencePrinceton UniversityPrincetonUSA
  3. 3.NEC Research InstitutePrincetonUSA

Personalised recommendations