, Volume 7, Issue 1–6, pp 277–288 | Cite as

The rectilinear steiner arborescence problem

  • Sailesh K. Rao
  • P. Sadayappan
  • Frank K. Hwang
  • Peter W. Shor


The Rectilinear Steiner Arborescence (RSA) problem is “Given a setN ofn nodes lying in the first quadrant of E2, find the shortest directed tree rooted at the origin, containing all nodes inN, and composed solely of horizontal and vertical arcs oriented only from left to right or from bottom to top.” In this paper we investigate many fundamental properties of the RSA problem, propose anO(n logn)-time heuristic algorithm giving an RSA whose length has an upper bound of twice that of the minimum length RSA, and show that a polynomial-time algorithm that was earlier reported in the literature for this problem is incorrect.

Key words

Steiner trees Rectilinear distance Directed graphs Steiner ratio Heuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. R. K. Chung and R. L. Graham, On Steiner trees for bounded sets,Geom. Dedicata 11 (1981), 353–361.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    L. Few, The shortest path and shortest roads throughn points,Mathematika 2 (1955), 141–144.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete,SIAM J, Appl. Math. 32 (1977), 826–834.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Hanan, On Steiner's problem with rectilinear distance,SIAM J. Appl. Math. 14 (1966), 255–265.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. K. Hwang, On Steiner minimal trees with rectilinear distance,SIAM J. Appl. Math. 30 (1976), 104–114.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    F. K. Hwang, AnO(n logn) algorithm for rectilinear minimal spanning trees,J. Assoc. Comput. Mach. 26 (1979), 177–182.zbMATHMathSciNetGoogle Scholar
  7. [7]
    R. R. Ladeira de Matos, A Rectilinear Arborescence Problem, Dissertation, University of Alabama, 1979.Google Scholar
  8. [8]
    L. Nastansky, S. M. Selkow, and N. F. Stewart, Cost-minimal trees in directed acyclic graphs,Z. Oper. Res. 18 (1974), 59–67.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. S. Provan, A Polynomial Algorithm for the Steiner Tree Problem on Terminal-Planar Graphs, Technical Report UNC/ORST/TR-83/10, University of North Carolina, 1983.Google Scholar
  10. [10]
    R. E. Tarjan, Finding optimum branchings,Networks 7 (1977), 25–35.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    V. A. Trubin, Subclass of the Steiner problems on a plane with rectilinear metric,Cybernetics 21 (1985), 320–322, translated fromKibernetika 21, No. 3 (1985), 37–40.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Sailesh K. Rao
    • 1
  • P. Sadayappan
    • 2
  • Frank K. Hwang
    • 3
  • Peter W. Shor
    • 3
  1. 1.AT&T Bell LaboratoriesHolmdelUSA
  2. 2.Department of Computer ScienceOhio State UniversityColumbusUSA
  3. 3.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations