Journal of Muscle Research & Cell Motility

, Volume 10, Issue 4, pp 290–296 | Cite as

Histochemistry and isomyosins of tail musculature inXenopus

  • Leszek Kordylewski
  • Jadwiga Faber
  • Alicja Görlich
  • Wincenty Kilarski
Papers

Summary

The main bulk of the larval tail inXenopus laevis is composed of thick muscle fibres which are succinate dehydrogenase (SDH) negative and show strong positive ATPase activity only at alkaline preincubation (pH 10.4). The thin muscle fibres (which cover the surface of the myotomes and extend to the tail tip) show positive SDH activity as well as strong positive ATPase activity after both alkaline and acid preincubations (pH 10.4, 4.5, 4.4, and 4.3). The pattern of myosin isoenzymes does not change in the tail muscle in the course of development ofXenopus: the same three bands of larval isomyosins were found in all the examined developmental stages: 40, 47, 50 and 56. However, the larval bands were distinct from three bands of myosin isoforms in the musculus longissimus dorsi (MLD) and musculus grastrocnemius (MG) of the metamorphosedXenopus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chanoine, Ch., D'Albis, A., Lenfant-Guyot, M., Janmot, CH. &Gallien, C. L. (1987) Regulation by thyroid hormones of terminal differentiaion in the skeletal dorsal muscle. II. Urodelan amphibians.Develop. Biol. 123, 33–43.Google Scholar
  2. Guth, L. &Samaha, F. J. (1970) Procedure for the histochemical demonstration of actomyosin ATPase.Exp. Neurol. 28, 365–7.Google Scholar
  3. Hoh, J. F. (1976) Electrophoretic analysis of multiple forms of myosin in fast-twitch and slow-twitch muscles of the chick.Biochem. J. 157, 87–95.Google Scholar
  4. Karasiński, J. &Kilarski, W. (1986) Myosin isoenzymes of amphibian hearts.Comp. Biochem. Physiol. 83B, 3, 677–9.Google Scholar
  5. Kordylewski, L. (1986) Differentiation of tail and trunk musculature in the tadpoles ofXenopus laevis. Z. mikrosk-anat. Forsch. 100, 5, 767–89.Google Scholar
  6. LÄnnergren, J. &Smith, R. S. (1966) Types of muscle fibres in toad skeletal muscle.Acta physiol. scand. 68, 263–74.Google Scholar
  7. LÄnnergren, J. (1979) An intermediate type of muscle fibre inXenopus laevis. Nature279, 254–56.Google Scholar
  8. LÄnnergren, J. (1987) Contractile properties and myosin isoenzymes of various kinds ofXenopus twitch muscle fibres.J. Musc. Res. Cell Motil. 8, 260–73.Google Scholar
  9. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. &Randall, R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–75.Google Scholar
  10. Matsuda, R., Bandman, E. &Strohman, R. C. (1982) The two myosin isoenzymes of chicken anterior latissimus dorsi muscle contain different myosin heavy chains encoded by separate mRNAs.Differentiation 23, 36–42.Google Scholar
  11. Nieuwkoop, P. B. &Faber, J. (1967)Normal Tables of Xenopus laevis (Daudin). Utrecht: North Holland Pub. Co.Google Scholar
  12. Pliszka, B., Strzelecka-Golaszewska, H., Pantaloni, C. &D'Albis, A. (1981) Comparison of myosin isoenzymes from slow-tonic and fast-twitch fibres of frog muscle.Eur. J. Cell Biol. 25, 144–9.Google Scholar
  13. Pool, C. W., Diegenbach, P. C. &Scholten, G. (1979) Quantitative succinate dehydrogenase histochemistry. A methodological study of mammalian and fish muscle.Histochemistry 64, 251–62.Google Scholar
  14. Putnam, R. W. &Bennett, A. F. (1983) Histochemical, enzymatic, and contractile properties of skeletal muscle of three anuran amphibians.Am. J. Physiol. 244, R 558–67.Google Scholar
  15. Sasaki, F. (1974) Histochemical and ultrastructural studies of tail muscles in the anuran tadpole.Acta Histochem. Cytochem. 7, 3, 239–56.Google Scholar
  16. Sasaki, F. (1977) Histochemical and biochemical investigation of the tail muscle of anuran tadpoles during metamorphosis.Acta Histochem. Cytochem. 10, 4, 413–25.Google Scholar
  17. Smith, R. S. &Ovalle, W. K. Jr. (1973) Varieties of fast and slow extrafusal muscle fibres in amphibian hind limb muscles.J. Anat. 116, 1–24.Google Scholar
  18. Totland, G. K. (1976) Three muscle fibre types in the axial muscle of axolotl (Ambystoma mexicanum Shaw). A quantitative light- and electron-microscopic study.Cell Tiss. Res. 168, 65–78.Google Scholar
  19. Watanabe, K. &Sasaki, F. (1974) Ultrastructural changes in the tail muscles of anuran tadpoles during metamorphosis.Cell Tiss. Res. 155, 321–336.Google Scholar
  20. Watanabe, K., Khan, M. A., Sasaki, F. &Iseki, H. (1978a) Light and electron microscopic investigation of ATPase activity in musculature during anuran tail resorption.Histochemistry 58, 13–22.Google Scholar
  21. Watanabe, K., Sasaki, F. &Khan, M. A. (1978b) Light and electron microscopic study of adenosine triphosphate activity of anuran tadpole musculature.Histochemistry 55, 293–305.Google Scholar
  22. Watanabe, K., Sasaki, F., Takahama, H. &Iseki, H. (1980) Histogenesis and distribution of red and white muscle fibres of urodelan larvae.J. Anat. 130, 83–96.Google Scholar
  23. Whalen, R. G., Bugaisky, L. B., Butler-Browne, G. S., Sell, S. M., Schwartz, K. &Pinset-HÄrström, I. (1982) Characterisation of myosin isozymes appearing during rat muscle development. InMuscle Development: Molecular and Cellular Control. (edited byPearson, M. L. &Epstein, H. F.) pp. 25–33. Cold Spring Harbor, N.Y.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • Leszek Kordylewski
    • 1
  • Jadwiga Faber
    • 1
  • Alicja Görlich
    • 1
  • Wincenty Kilarski
    • 1
  1. 1.Department of Cytology and Histology, Institute of ZoologyJagiellonian UniversityKrakówPoland

Personalised recommendations