Journal of Muscle Research & Cell Motility

, Volume 10, Issue 4, pp 280–289 | Cite as

The structure and function of α-actinin

  • Andrew Blanchard
  • Vasken Ohanian
  • David Critchley
Review

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arimura, C., Suzuki, T., Yanagisawa, M., Imamura, M., Hamada, Y. &Masaki, T. (1988) Primary structure of chicken skeletal muscle and fibroblastα-actinin deduced from cDNA sequences.Eur. J. Biochem. 177, 649–55.Google Scholar
  2. Ball, E. H., Freitag, C. &Gurofsky, S. (1986) Vinculin interaction with permeabilised cells: disruption and reconstitution of a binding site.J. Cell Biol. 102, 641–8.Google Scholar
  3. Baron, M. D., Davison, M. D., Jones, P. &Critchley, D. R. (1987a) The sequence of chickα-actinin reveals homologies to spectrin and calmodulin.J. biol. Chem. 262, 17623–29.Google Scholar
  4. Baron, M. D., Davison, M. D., Jones, P., Patel, B. &Critchley, D. R. (1987b) Isolation and characterisation of cDNA encoding a chickα-actinin.J. biol. Chem. 262, 2258–61.Google Scholar
  5. Belkin, A. M. &Koteliansky, V. E. (1987) Interaction of iodinated vinculin, metavinculin andα-actinin with cytoskeletal proteins.FEBS Lett. 220, 291–94.Google Scholar
  6. Bennett, J. P., Zaner, K. S. &Stossell, T. P. (1984) Isolation and some properties of macrophageα-actinin: evidence that it is not an actin gelling protein.Biochemistry 23, 5081–6.Google Scholar
  7. Bretscher, A., Vandekerckhove, J. &Weber, K. (1979)α-actinins from chicken skeletal muscle and smooth muscle show considerable chemical and immunological differences.Eur. J. Biochem. 100, 237–43.Google Scholar
  8. Burn, P., Rotman, A., Mayer, R. K. &Burger, M. M. (1985) Diacylglycerol in largeα-actinin/actin complexes in the cytoskeleton of activated platelets.Nature 314, 469–72.Google Scholar
  9. Burridge, K. &Feramisco, J. R. (1981) Non-muscleα-actinins are calcium sensitive actin binding proteins.Nature 294, 565–7.Google Scholar
  10. Burridge, K. &Feramisco, J. R. (1982)α-actinin and vinculin from non-muscle cells: calcium sensitive interactions with actin.Cold Spring Harbor Symp. 46, 587–97.Google Scholar
  11. Chen, W-L. &Singer, S. J. (1982) Immunoelectron microscopic studies of the sites of substratum and cell-cell contacts in cultured fibroblasts.J. Cell Biol. 95, 205–22.Google Scholar
  12. Chen, W-L., Wang, J., Hasegawa, T., Yamada, S. S. &Yamada, K. M. (1986) Regulations of fibronectin receptor distribution by transformation, exogenous fibronectin, and synthetic peptides.J. Cell Biol. 103, 1649–61.Google Scholar
  13. Craig, S. W. &Pardo, J. V. (1979)α-actinin localisation in the junctional complex of intestinal epithelial cells.J. Cell Biol. 80, 203–10.Google Scholar
  14. Davidson, M. D., Baron, M. D., Wootton, J. C. &Critchley, D. R. (1989) Structural analysis of homologous repeated domains inα-actinin and spectrin.Int. J. Biol. Macro. in press.Google Scholar
  15. Davison, M. D. &Critchley, D. R. (1988)α-actinin and the DMD protein contain spectrin-like repeats.Cell 52, 159–60.Google Scholar
  16. Drenckhahn, D. &Mannherz, H. G. (1983) Distribution of actin and the actin-associated proteins myosin, tropomyosin,α-actinin, vinculin and villin in rat and bovine exocrine glands.Eur. J. Cell Biol. 30, 167–76.Google Scholar
  17. Duhaiman, A. S. &Bamburg, J. R. (1984) Isolation of brainα-actinin. Its characterisation and comparison of its properties with those of muscleα-actinins.Biochemistry 23, 1600–8.Google Scholar
  18. Endo, T. &Masaki, T. (1982) Molecular properties and functions in vitro of chicken smooth muscleα-actinin in comparison with those of striated muscleα-actinins.J. Biochem. 92, 1457–68.Google Scholar
  19. Endo, T. &Masaki, T. (1984) Differential expression and distribution of chicken skeletal and smooth muscleα-actinins during myogenesis in culture.J. Cell Biol. 99, 2322–32.Google Scholar
  20. Feener, C. A., Koenig, M. &Kunkel, L. M. (1989) Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus.Nature 338, 509–11.Google Scholar
  21. Feramisco, J. R. &Burridge, K. (1980) A rapid purification ofα-actinin, filamin and 130 000 dalton protein from smooth muscle.J. biol. Chem. 225, 1194–9.Google Scholar
  22. Gache, Y., Landon, F. &Olonucki, A. (1984) Polymorphism ofα-actinin from human blood platelets.Eur. J. Biochem. 141, 57–61.Google Scholar
  23. Geiger, B. (1983) Membrane cytoskeletal interactionsBiochim. Biophys. Res. Comm. 737, 305–41.Google Scholar
  24. Geiger, B., Avnur, Z. &Schlessinger, J. (1982) Restricted mobility of membrane constituents in cell substrate focal contacts of chicken fibroblasts.J. Cell Biol. 93, 495–500.Google Scholar
  25. Geiger, B., Avnur, Z., Kreis, T. E. &Schlessinger, J. (1984) The dynamics of cytoskeletal organisation in areas of cell contact.Cell Muscle Motil. 5, 195–234.Google Scholar
  26. Geiger, B., Dutton, A. H., Tokuyasu, K. T. &Singer, S. J. (1986) Immunoelectron microscope studies of membrane microfilament interactions: Distributions ofα-actinin, tropomyosin and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells.J. Cell Biol. 91, 614–30.Google Scholar
  27. Geiger, B., Tokuyasu, K. T. &Singer, S. J. (1979) Immunocytochemical localisation ofα-actinin in intestinal epithelial cells.Proc. Natl. Acad. Sci. U.S.A. 76, 2833–7.Google Scholar
  28. Hammonds, R. G. (1987) Protein sequence of DMD gene is related to actin binding domain ofα-actinin.Cell 51, 1.Google Scholar
  29. Herman, B. &Pledger, W. J. (1985) PDGF induced alterations in vinculin and actin distribution in BALB/c-3T3 cells.J. Cell Biol. 100, 1031–40.Google Scholar
  30. Hoffman, E. P., Watkins, S. C., Slayter, H. S. &Kunkel, L. M. (1989) Detection of a specific isoform ofα-actinin with antisera directed against dystrophin.J. Cell Biol. 108, 503–10.Google Scholar
  31. Imamura, M., Endo, T., Kuroda, M., Tanaka, T. &Masaki, T. (1988) Substructure and higher structure of chicken smooth muscleα-actinin molecule.J. biol. Chem. 263, 7800–5.Google Scholar
  32. Jockusch, E. M. &Isenberg, G. (1981) Interaction ofα-actinin and vinculin with actin: Opposite effects on filament network formation.Proc. Natl. Acad. Sci. U.S.A. 78, 3005–9.Google Scholar
  33. Koenig, M., Monaco, A. P. &Kunkel, L. M. (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein.Cell 53, 219–28.Google Scholar
  34. Landon, F., Gache, Y., Touitou, H. &Olomucki, A. (1985) Properties of two isoforms of human blood plateletα-actinins.Eur. J. Biochem. 153, 231–7.Google Scholar
  35. Lazarides, E. &Burridge, K. (1975)α-actin: Immunofluorescent localisation of a muscle structural protein in non-muscle cells.Cell 6, 289–98.Google Scholar
  36. McKenna, N. M., Miegs, J. B. &Wang, Y-L. (1985) Exchangeability ofα-actinin in living cardiac fibroblasts and muscle cells.J. Cell Biol. 101, 2223–32.Google Scholar
  37. Meyer, R. K., Schindler, H. &Burger, N. M. (1982)α-actinin interacts specifically with model membranes containing glycerides and fatty acids.Proc. Natl. Acad. Sci. U.S.A. 79, 4280–4.Google Scholar
  38. Miegs, J. B. &Wang, Y-L. (1986) Reorganisation ofα-actinin and vinculin induced by phorbol esters in living cells.J. Cell Biol. 102, 1430–8.Google Scholar
  39. Mimura, N. &Asano, A. (1986) Isolation and characterisation of a conserved actin binding domain from rat hepatic actinogelin, rat skeletal muscle and chicken gizzardα-actinins.J. biol. Chem. 261, 10680–7.Google Scholar
  40. Mimura, N. &Asano, A. (1987) Further characterisation of a conserved actin binding 27 kDa fragment of actinogelin andα-actinins and mapping of their binding sites on the actin molecule by chemical cross-linking.J. biol. Chem. 262, 4717–23.Google Scholar
  41. Narvanen, O., Narvanen, A., Waserius, V-M., Partanen, P. &Vitranen, I. (1987) A monoclonal antibody against a synthetic peptide reveals common structures among spectrins andα-actinin.FEBS Lett. 224, 156–60.Google Scholar
  42. Noegel, A., Witke, W. &Schleicher, M. (1987) Calcium sensitive non-muscleα-actinin containsEF-hand structures and highly conserved regions.FEBS Lett. 221, 391–6.Google Scholar
  43. Nudel, U., Zuk, D., Einat, P., Zeelan, E., Levy, Z., Neuman, S. &Yaffe, D. (1989) DMD gene product is not identical in muscle and brain.Nature 337, 76–8.Google Scholar
  44. Ohanian, V., Wolfe, L. C., John, K., Pinder, J. C., Lux, S. E. &Gratzer, W. B. (1984) Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin & 4.1.Biochemistry 23, 4416–20.Google Scholar
  45. Ohtaki, T., Tsukita, S., Mimura, N., Tsukita, S. &Asano, A. (1985) Interaction of actinogelin with actin.Eur. J. Biochem. 153, 609–20.Google Scholar
  46. Podlubnaya, Z. A., Tskhovnebova, L. A., Zaalishvili, M. M. &Stefanenko, G. A. (1975) Electron microscopic study ofα-actininJ. Mol. Biol. 92, 357–9.Google Scholar
  47. Rosenfeld, G. C., Hou, D. C., Dingus, J., Meza, I. &Bryan, J. (1985) Isolation and partial characterisation of human platelet vinculin.J. Cell Biol. 100, 669–76.Google Scholar
  48. Ruoslahti, E. &Pierschbacher, M. D. (1987) New perspectives in cell adhesion: RGD and integrins.Science 238, 491–7.Google Scholar
  49. Schleicher, M., Noegel, A., Schwarz, T., Wallraff, E., Brink, N., Faix, J. Gerisch, G. &Isenberg, G. (1988) ADictyostelium mutant with severe defects inα-actinin: its characterisation using cDNA probes and monoclonal antibodies.J. Cell Sci. 90, 59–66.Google Scholar
  50. Speicher, D. W. &Marchesi, V. T. (1984) Erythrocyte spectrin is comprised of many homologous triple helical segments.Nature 311, 177–80.Google Scholar
  51. Stickel, S. K. &Wang, Y-L. (1987)α-actinin containing aggregates in transformed cells are highly dynamic structures.J. Cell Biol. 104, 1521–26.Google Scholar
  52. Stickel, S. K. &Wang, Y-L. (1988) Synthetic peptide GRGDS induces dissociation ofα-actinin and vinculin from the sites of focal contacts.J. Cell Biol. 107, 1231–9.Google Scholar
  53. Tokuyasu, K. T., Dutton, A. H., Geiger, B. &Singer, S. J. (1981) Ultrastructure of chicken cardiac muscle as studied by double immunolabelling in electron microscope.Proc. Natl. Acad. Sci. U.S.A. 78, 7619–23.Google Scholar
  54. Wallraff, E., Schleicher, N., Modersitzki, M., Rieger, D., Isenberg, G. &Gerisch, G. (1986) Selection ofDictyostelium mutants defective in cytoskeletal proteins: Use of an antibody that binds to the ends ofα-actinin rods.EMBO J. 5, 61–5.Google Scholar
  55. Wasenius, V-M., Narvanen, O., Lehto, V-P. &Saraste, M. (1987)α-actinin and spectrin have common structural domains.FEBS Lett. 221, 73–6.Google Scholar
  56. Wasenius, V-M., Saraste, M., Salven, P., Eramaa, M., Holm, L. &Sclehto, V-P. (1989) Primary structure of the brainα-spectrin.J. Cell Biol. 108, 79–93.Google Scholar
  57. Wilkins, J. A. &Lin, S. (1982) High affinity interaction of vinculin with actin filamentsin vitro. Cell28, 83–90.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • Andrew Blanchard
    • 1
  • Vasken Ohanian
    • 1
  • David Critchley
    • 1
  1. 1.Department of Biochemistry, Adrian BuildingUniversity of LeicesterLeicesterUK

Personalised recommendations