Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanical stimulation activates beating in calcium-arrested lateral cilia ofMytilus edulis gill

Summary

Lateral cilia ofMytilus edulis gill arrest upon mechanical stimulation, the result of calcium influx. A mechanical stimulus that deflects these cilia toward the effective stroke, and is normally sufficient to cause transient arrest in beating lateral cilia or transient movement into the recovery stroke in quiescent cilia, initiates beating in Ca2+ ionophore-arrested cilia at 9–15 Hz, for periods as long as 30 S. This movement is restricted to the stimulated cilia and the beat pattern appears constrained in the first half of the beat cycle. Application of dopamine causes ciliary arrest in the presence (but not absence) of Ca2+ and mechanical stimulation will also activate such cilia to beat. In the presence of ATP, mechanical stimulation of detergent-permeabilized lateral cell models arrested in the presence of 50 μm Ca2+ will also cause activation comparable in frequency, duration, and beat pattern to that seen in Ca2+-arrested cells, but the initiation is more difficult. Upon application of ionophore in Ca2+-free (EGTA) seawater, the cilia become quiescent, stopped at the end of the recovery stroke. Mechanical stimulation will cause activation of beat, with a similar range of frequencies and duration as in Ca2+-arrested lateral cilia, but the beat pattern is normal and cilia of adjacent cells may also beat, presumably initiated by mechanical coupling. Gently lifting cilia at their basal ends, using small, slow movements of a mechanical probe, will initiate several beat cycles in quiescent lateral cilia but will cause Ca2+-arrested cilia to‘snap’ into the effective stroke and back. These data indicate that Ca2+-arrest does not involve permanent, rigor-like dynein crossbridges since such cilia are quite capable of beating, if given sufficient momentum. This would also suggest that ionic control must act at the level of crossbridge initiation, timing or coordination.

This is a preview of subscription content, log in to check access.

References

  1. Aiello, E. (1962) Identification of the cilio-excitatory substance present in the gill of the musselMytilus edulis.J. Cell. Comp. Physiol. 60, 17–21.

  2. Baba, S. A. (1975) Developmental changes in the pattern of ciliary response and the swimming behavior in some invertebrate larvae. InSwimming and Flying in Nature, Vol. 1 (edited byYu, T. Y.-T., Brokaw, C. J. andBrennen, C.), pp. 317–23. New York: Plenum Press.

  3. Baba, S. A. (1979) Regular steps in bending cilia during the effective stroke.Nature, Lond. 282, 717–20.

  4. Brokaw, C. J. (1966) Bend propagation along flagella.Nature, Lond. 209, 161–3.

  5. Inoué, S. (1981) Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy.J. Cell Biol. 89, 346–56.

  6. Kinosita, H. &Kamada, T. (1939) Movement of abfrontal cilia ofMytilus.Japan. J. Zool. 8, 291–310.

  7. Machemer, H. (1974) Ciliary activity and metachronism in protozoa. InCilia and Flagella (edited bySleigh, M. A.), pp. 199–286. London: Academic Press.

  8. Machin, E. J. (1958) Wave propagation along flagella.J. exp. Biol. 35, 796–806.

  9. Makato, O. &Hiramoto, Y. (1976) Mechanical stimulation of starfish sperm flagella.J. exp. Biol. 59, 231–45.

  10. Malanga, C. J. &Poll, K. A. (1979) Effects of the cilio-excitatory neurohumors dopamine and 5-hydroxytryptamine on cyclic AMP levels in the gill of the musselMytilus edulis.Life Sci. 25, 365–74.

  11. Motokawa, T. &Takahashi, K. (1972) Responses of cilia to mechanical stimulation (in Japanese).Zool. Mag., Tokyo 81, 392 (abstract).

  12. Motokawa, T. &Takahashi, K. (1974) Response of nonbeating cilia ofMytilus to mechanical stimulation.J. Fac. Univ. Tokyo IV 13, 233–42.

  13. Murakami, A. (1963) Analysis of the metachronal co-ordination in ciliary pads ofMytilus gill.J. Fac. Univ. Tokyo IV 10, 23–35.

  14. Murakami, A. (1983) Control of ciliary beat frequency inMytilus.J. Submicrosc. Cytol. 1, 313–16.

  15. Murakami, A. &Machemer, H. (1982) Mechanoreception in the lateral cells ofMytilus.J. Comp. Physiol. 145, 351–62.

  16. Murakami, A. &Takahashi, K. (1975a) Correlation of electrical and mechanical responses in nervous control of cilia.Nature, Lond. 257, 48–9.

  17. Murakami, A. &Takahashi, K. (1975b) The role of calcium in the control of ciliary movement inMytilus. II. The effects of calcium ionophores X537A and A23187 on the lateral gill cilia.J. Fac. Univ. Tokyo IV 13, 251–6.

  18. Onishi, K., Suzuki, Y. &Watanabe, Y. (1982) Studies on calmodulin isolated fromTetrahymena cilia and its localization within the cilium.Expl Cell Res. 137, 217–227.

  19. Paparo, A. A. (1972) Innervation of the lateral cilia in the musselMytilus edulis L.Biol. Bull. mar. biol. lab., Woods Hole 143, 592–604.

  20. Paparo, A. A. &Aiello, E. (1970) Cilio-inhibitory effects of branchial nerve stimulation in the mussel,Mytilus edulis.Comp. gen. Pharmac. 1, 241–50.

  21. Paparo, A. A. &Murphy, J. A. (1975) The effects of Ca on the rate of beating of lateral cilia inMytilus edulis-II. A response to electrical stimulation of the branchial nerve.Comp. Biochem. Physiol. 50C, 15–19.

  22. Reed, W., Lebduska, S. &Satir, P. (1982) Effects of trifluoperazine upon the calcium-dependent ciliary arrest response of freshwater mussel gill lateral cells.Cell Motility 2, 405–27.

  23. Saimi, Y., Murakami, Y. &Takahashi, K. (1983a) Electrophysiological correlates of nervous control of ciliary arrest response in the gill epithelial cells ofMytilus.Comp. Biochem. Physiol. 74A, 499–506.

  24. Saimi, Y., Murakami, Y. &Takahashi, K. (1983b) Ciliary and electrical responses to intracellular current injection in the ciliated epithelium of the gill ofMytilus.Comp. Biochem. Physiol. 74A, 507–11.

  25. Satir, P. (1968) Studies on cilia. III. Further studies on the cilium tip and a “sliding filament model” of ciliary motility.J. Cell Biol. 39, 77–94.

  26. Satir, P. (1975) Ionophore-mediated calcium entry induces mussel gill ciliary arrest.Science 190, 586–8.

  27. Sleigh, M. A. (1974) Metachronism of cilia of metazoa, InCilia and Flagella (edited bySleigh, M. A.), pp. 287–304. London: Academic Press.

  28. Stommel, E. W. (1984) Calcium activation of mussel gill abfrontal cilia.J. conrp. Physiol. 155A, 457–69.

  29. Stommel, E. W. &Stephens, R. E. (1985) Cyclic AMP and calcium in the differential control ofMytilus gill cilia.J. Comp. Physiol. A 157, 451–9.

  30. Stommel, E. W., Stephens, R. E., Masure, H. R. &Head, J. F. (1982) Specific localization of scallop gill epithelial calmodulin in cilia.J. Cell Biol. 92, 622–8.

  31. Stephens, R. E. (1971) Microtubules. InSubunits in Biological Systems, part A (edited byTimasheff, S. N. andFasman, G. D.), pp. 355–91. New York: Marcel Dekker.

  32. Summers, K. &Gibbons, I. R. (1971) Adenosine triphosphate-induced sliding of tubules in trypsintreated flagella of sea urchin sperm.Proc. nain. Acad. Sci. U.S.A. 68, 3092–6.

  33. Takahashi, K. &Murakami, A. (1968) Nervous inhibition of ciliary motion in the gill of the mussel,Mytilus edulis.J. Fac. Univ. Tokyo IV 11, 359–72.

  34. Tamm, S. L. (1973) Mechanisms of ciliary co-ordination in ctenophores.J. exp. Biol. 59, 231–45.

  35. Tamm, S. L. (1980) The mechanism of intra-plate ciliary synchrony in ctenophores.Biol. Bull. mar. biol. lab., Woods Hole 159, 446 (abstract).

  36. Tamm, S. L. (1983) Motility and mechanosensitivity of macrocilia in the ctenophoreBeroe.Nature, Land. 305, 430–3.

  37. Thurm, U. (1968) Steps in the transducer process of mechanoreceptors.Symp. Zool. Soc. London 23, 199–216.

  38. Tsuchiya, T. (1969) Synchronal coordination within a compound cilium ofMytilus edulis gill.Annotnes zool. jap. 42, 113–25.

  39. Tsuchiya, T. (1976) Ca-induced arrest in Triton-extracted lateral cilia ofMytilus.Experientia 32, 1439–40.

  40. Tsuchiya, T. (1977) Effects of calcium ions of Triton-extracted lammelibranch gill cilia: ciliary arrest response in a model system.Comp. Biochem. Physiol. 56A, 353–61.

  41. Wais-Steider, J. &Satir, P. (1979) Effect of vanadate on gill cilia: switching mechanism in ciliary beat.J. Supramolec. Struct. 11, 339–47.

  42. Walter, M. &Satir, P. (1979) Calcium does not inhibit active sliding of microtubules from mussel gill cilia.Nature, Lond. 278, 69–70.

  43. Warner, F. D. (1983) Organization of interdoublet links inTetrahymena cilia.Cell Motility 3, 321–32.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stommel, E.W. Mechanical stimulation activates beating in calcium-arrested lateral cilia ofMytilus edulis gill. J Muscle Res Cell Motil 7, 237–244 (1986). https://doi.org/10.1007/BF01753556

Download citation

Keywords

  • Dopamine
  • EGTA
  • Mechanical Stimulation
  • Mechanical Stimulus
  • Calcium Influx