Mathematical systems theory

, Volume 14, Issue 1, pp 305–334 | Cite as

Transformations of structures: An algebraic approach

  • Hartmut Ehrig
  • Hans-Jörg Kreowski
  • Andrea Maggiolo-Schettini
  • Barry K. Rosen
  • Jozef Winkowski


This paper introduces a new mathematical approach to transformations of structures, where the concept of “structure” is extremely general. Many structures and transformations that arise in biology as well as computer science are special cases of our concepts. A structure may be changed by finding an occurrence of a pattern and replacing it by another pattern as specified by a rule. To prove theorems about long sequences of applications of complicated rules, we need precise and tractable mathematical definitions of rules and how to apply them. This paper presents such definitions and three fundamental theorems, together with brief remarks on applications to control flow analysis, record handling, and evaluation of recursively defined functions. Unlike some previous efforts toward a rigorous theory of transformations of structures, this paper uses ideas and results from abstract algebra to minimize the need for elaborate constructions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Arbib and E. G. Manes,Arrows, Structures, and Functors, Academic Press, New York, 1975.Google Scholar
  2. 2.
    G. Berry and J.-J. Levy, Minimal and optimal computations of recursive programs,J. ACM 26 (1979), 148–175.Google Scholar
  3. 3.
    G. Birkhoff and J. D. Lipson, Heterogeneous algebras,J. Combinatorial Theory, 8 (1970), pp. 115–133.Google Scholar
  4. 4.
    V. Claus, H. Ehrig, and G. Rozenberg (Editors),Graph Grammars and their Application to Computer Science and Biology, Lecture Notes in Computer Sci., 73 (1979).Google Scholar
  5. 5.
    E. F. Codd,A relational model of data for large shared data banks, Comm. ACM, 13 (1970), pp. 377–387.Google Scholar
  6. 6.
    J. A. Darringer and W. H. Joyner,A new look at logic synthesis, IBM Research Report RC 8268, Yorktown Heights NY, May 1980.Google Scholar
  7. 7.
    H. Ehrig and H.-J. Kreowski, Contributions to the algebraic theory of graph grammars,Math. Nachr., to appear.Google Scholar
  8. 8.
    H. Ehrig and H.-J. Kreowski, Applications of graph grammar theory to consistency, synchronization, and scheduling in data base systems,Information Sciences, to appear.Google Scholar
  9. 9.
    H. Ehrig, H.-J. Kreowski, A. Maggiolo-Schettini, B. K. Rosen, and J. Winkowski, Deriving structures from structures,Lecture Notes in Computer Science, 64 (1978), pp. 177–190.Google Scholar
  10. 10.
    H. Ehrig, M. Pfender, and H. J. Schneider, Graph grammars: an algebraic approach,Proc. 14th Ann. IEEE Symp. on Switching and Automata Theory, Iowa City, October 1973, pp. 167–180.Google Scholar
  11. 11.
    H. Ehrig and B. K. Rosen,Commutativity of independent transformations on complex objects, IBM Research Report RC 6251, Yorktown Heights NY, October 1976.Google Scholar
  12. 12.
    H. Ehrig and B. K. Rosen, The mathematics of record handling,SIAM J. Computing, 9 (1980), 441–469.Google Scholar
  13. 13.
    H. Ehrig and B. K. Rosen,Commutativity, parallelism, and concurrency for transformations of structures, Bericht 79–21, Fachbereich Informatik, Tech. U. Berlin, October 1979.Google Scholar
  14. 14.
    H. Ehrig and K. W. Tischer, Graph grammars and applications to specialization and evolution in biology,J. Computer and System Sci., 11 (1975), pp. 212–236.Google Scholar
  15. 15.
    S. Eilenberg and J. Wright, Automata in general algebras,Information and Control, 11 (1967), 452–470.Google Scholar
  16. 16.
    R. Farrow, K. Kennedy, and L. Zucconi, Graph grammars and global program data flow analysis,Proc. 17th Ann. IEEE Symp. on Foundations of Computer Sci., Houston, October 1976, pp. 42–56.Google Scholar
  17. 17.
    H. Herrlich and G. Strecker,Category Theory, Allyn and Bacon, Rockleigh, New Jersey, 1973.Google Scholar
  18. 18.
    H.-J. Kreowski,Ein Pumpinglemma für Kanten-Kontextfreie Graph-Sprachen, Bericht 77–15, Fachbereich Informatik, Tech. U. Berlin, September 1977. (See also [4].)Google Scholar
  19. 19.
    M. J. O'Donnell, Computing in systems described by equations,Lecture Notes in Computer Science, 58 (1977).Google Scholar
  20. 20.
    G. Pacini, C. Montangero, and F. Turini, Graph representation and computation rule for typeless recursive languages,Lecture Notes in Computer Science, 14 (1974), pp. 157–169.Google Scholar
  21. 21.
    Padawitz, P.,Graph grammars and operational semantics, Bericht 78–33, Fachbereich Informatik, Tech. U. Berlin, October 1978. (See also [4].)Google Scholar
  22. 22.
    V. Rajlich, Dynamics of discrete systems ⋯,J. Computer and System Sci., 11 (1975), pp. 186–202.Google Scholar
  23. 23.
    B. K. Rosen, Deriving graphs from graphs by applying a production,Acta Informatica, 4 (1975), pp. 337–357.Google Scholar
  24. 24.
    H. J. Schneider and H. Ehrig, Grammars on partial graphs,Acta Informatica, 6 (1976), pp. 297–316.Google Scholar
  25. 25.
    J. Staples, A class of replacement systems with simple optimality theory,Bull. Austral. Math. Soc., 17 (1977), p. 335–350.Google Scholar
  26. 26.
    J. Staples, Computation on graph-like expressions,Theoretical Computer Sci., 10 (1980), 171–185.Google Scholar
  27. 27.
    J. Staples, Optimal evaluations of graph-like expressions,Theoretical Computer Sci., 10 (1980), 297–316.Google Scholar
  28. 28.
    J. Staples, Speeding up subtree replacement systems,Theoretical Computer Sci., 11 (1980), 39–47.Google Scholar
  29. 29.
    S. A. Vere, Relational production systems,Artificial Intelligence, 8 (1977), pp. 47–68.Google Scholar
  30. 30.
    J. Vuillemin, Correct and optimal implementations of recursion in a simple programming language,J. Computer and System Sci., 9 (1974), pp. 332–354.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • Hartmut Ehrig
  • Hans-Jörg Kreowski
    • 1
  • Andrea Maggiolo-Schettini
    • 2
  • Barry K. Rosen
    • 3
  • Jozef Winkowski
    • 4
  1. 1.Fachbereich InformatikTechnische Universität BerlinBerlin 10Federal Republic of Germany
  2. 2.Istituto di Scienze dell'InformazioneUniversita di PisaPisaItaly
  3. 3.Computer Sciences DepartmentIBM Thomas J. Watson Research CenterYorktown HeightsUSA
  4. 4.Instytut Podstaw Informatyki PANWarszawaPoland

Personalised recommendations