Advertisement

Mathematical systems theory

, Volume 14, Issue 1, pp 247–288 | Cite as

Sur une propriété d'itération des langages algébriques déterministes

  • Jacques Sakarovitch
Article
  • 24 Downloads

Abstract

The aim of this paper is to establish an iterative property for deterministic context-free languages. This property then allows one to infer the nondeterminism of context-free languages of a certain family from the structure of their syntactic monoids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    H. Alt et K. Mehlhorn, Lower bounds for the space complexity of context-free recognition, in3 rd International Colloquium on Automata, Languages and Programming (S. Michaelson and R. Milner, Eds.) Edinburgh University Press, 338–354, 1976.Google Scholar
  2. 2.
    L. Boasson, Two iteration theorems for some families of languages,J. of Comput. and System Sci. 7, 583–596, 1973.Google Scholar
  3. 3.
    L. Boasson, Langages algébriques, paires itérantes et transductions rationnelles,Theoretical Computer Sci. 2, 209–223, 1976.Google Scholar
  4. 4.
    J. A. Brzozowski et I. Simon, Characterizations of locally testable events,Discrete Mathematics 4, 243–271, 1973.Google Scholar
  5. 5.
    A. H. Clifford et G. B. Preston,The Algebraic Theory of Semigroups, American Math. Soc. Vol. 1, 1961, Vol. 2, 1967.Google Scholar
  6. 6.
    B. Courcelle, Applications de la théorie des langages à la théorie des schémas de programmes, Thèse 3ème cycle math., Univ. Paris 7, 1974.Google Scholar
  7. 7.
    S. Eilenberg,Automata, langages and machines, Vol. B, Academic Press, 1976.Google Scholar
  8. 8.
    S. Ginsburg,The mathematical theory of context-free languages, McGraw-Hill, 1966.Google Scholar
  9. 9.
    S. Ginsburg et S. Greibach, Deterministic context-free languages,Inf. and Control 9, 620–648, 1966.Google Scholar
  10. 10.
    M. A. Harrison et I. M. Havel, Strict deterministic grammars,J. of Comput. and System Sci. 7, 237–277, 1973.Google Scholar
  11. 11.
    M. A. Harrison et I. M. Havel, On the parsing of deterministic languages,J. Assoc. Computing Machinery 21, 525–548, 1974.Google Scholar
  12. 12.
    S. Lang,Algebra, Addison Wesley, 1965.Google Scholar
  13. 13.
    R. McNaughton et S. Papert,Counter-free Automata, Cambridge: MIT Press, 1971.Google Scholar
  14. 14.
    M. Nivat, Transductions des langages de Chomsky,Ann. Inst. Fourier, 18, Grenoble, 339–456, 1968.Google Scholar
  15. 15.
    W. Ogden, A helpful result for proving inherent ambiguity,Math. System Theory 2, 191–194, 1967.Google Scholar
  16. 16.
    W. Ogden, Intercalation theorems for pushdown store and stack languages, Ph.D. Thesis, Stanford, 1968.Google Scholar
  17. 17.
    D. Perrin, La transitivité du groupe d'un code bipréfixe fini,Math. Zeitschrift, 153, 283–287, 1977.Google Scholar
  18. 18.
    J-F. Perrot, Contribution à l'étude des monoides syntactiques et de certains groupes associés aux automates finis, Thèse Sci. Math. Univ. Paris VI, 1972.Google Scholar
  19. 19.
    J-F. Perrot, Monoïdes syntactiques des langages algébriques,Acta Informatica, 7, 399–413, 1977.Google Scholar
  20. 20.
    J-F. Perrot et J. Sakarovitch, Langages algébriques déterministes et groupes abéliens, inAutomata Theory and Formal Languages 2nd GI Conference, Lecture notes in Computer Science 33, Springer Verlag, 20–30.Google Scholar
  21. 21.
    J-F. Perrot et J. Sakarovitch, A theory of syntactic monoïds for context-free languages, inInformation Processing 77, (B. Gilchrist Ed.), North Holland, 1977, 69–72.Google Scholar
  22. 22.
    J. Sakarovitch, Monoïdes syntactiques et langages algébriques, Thèse 3ème cycle math., Univ. Paris VII, Paris, 1976.Google Scholar
  23. 23.
    J. Sakarovitch, Sur les monoides syntactiques des langages algébriques déterministes, in3 rd International Colloquium on Automata, Languages and Programming (S. Michaelson and R. Milner, Eds.), Edinburgh University Press, 1976, pp. 52–65.Google Scholar
  24. 24.
    J. Sakarovitch, On deterministic commutative context-free language, inProceedings of a Conference on Theoretical Computer Science held at Waterloo, Ontario, Canada (E. Ashroft and J. Brzozowski, Eds.), 88–93, 1977.Google Scholar
  25. 25.
    J. Sakarovitch, Monoïdes pointés,Semigroup Forum 18, 235–264 (1979).Google Scholar
  26. 26.
    M. P. Schützenberger, Une théorie algébrique du codage, Séminaire Dubreil-Pisot, année 1955–56, exposé n° 15.Google Scholar
  27. 27.
    M. P. Schützenberger, On finite monoids having only trivial subgroups,Information and Control 8, 190–194, 1965.Google Scholar
  28. 28.
    I. Simon, Piecewise testable events, inAutomata theory and formal languages, 2nd GI Conference, Lecture Notes in Computer Science 33, Springer-Verlag, 214–222.Google Scholar
  29. 29.
    J. Smith, Monoid acceptors and their relation to formal languages, Ph.D. Thesis, University of Pennsylvania, 1972.Google Scholar
  30. 30.
    R. E. Stearns, A regularity test for pushdown machines,Information and Control 11, 323–340, 1967.Google Scholar
  31. 31.
    M. Teissier, Sur les équivalences régulières dans les demi-groupes,C. R. Acad. Sci. Paris, 232, 1987–1989, (1951).Google Scholar
  32. 32.
    L. G. Valiant, Decision procedures for families of deterministic pushdown automata, Ph.D. Dissert., Univ. of Warwick, Coventry, 1973.Google Scholar
  33. 33.
    E. Valkema, Zur Charakterisierung formaler Sprachen durch Halbgruppen, Dissertation, Kiel, 1974.Google Scholar
  34. 34.
    Y. Zalcstein, Syntactic semigroups of some classes of star-free languages, inAutomata, Languages and Programming (M. Nivat, Ed.), North-Holland, 1973, 135–144.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • Jacques Sakarovitch
    • 1
  1. 1.C.N.R.S. Laboratoire d'Informatique Théorique et ProgrammationUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations