Mathematical systems theory

, Volume 3, Issue 2, pp 146–150 | Cite as

Convolution of invariant measures, maximal entropy

  • Kenneth R. Berg


Computational Mathematic Invariant Measure Maximal Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Adler andB. Weiss, Entropy, a complete metric invariant for automorphisms of the torus,Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1573–1576.Google Scholar
  2. [2]
    P. Billingsley,Ergodic Theory and Information, John Wiley and Sons, Inc., New York, 1965.Google Scholar
  3. [3]
    H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,Math. Systems Theory 1 (1967), 1–49.Google Scholar
  4. [4]
    S. Juzvinskii, Metric properties of the endomorphisms of compact groups (Russian),Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 1295–1328;Amer. Math. Soc. Transl. (2)66 (1968), 63–98.Google Scholar
  5. [5]
    W. Parry,Entropy and Generators in Ergodic Theory, Yale University, New Haven, 1966.Google Scholar
  6. [6]
    F. Wright,Symposium on Ergodic Theory, Academic Press, New York, 1963.Google Scholar

Copyright information

© Swets & Zeitlinger B.V. 1969

Authors and Affiliations

  • Kenneth R. Berg
    • 1
  1. 1.University of MarylandCollege ParkUSA

Personalised recommendations