Advertisement

Two and three photon dissociation of SbBr3 and a statistical interpretation of the fragmentation

  • G. Haunert
  • E. Tiemann
Molecules

Abstract

UV two and three photon dissociation of SbBr3 in the gas phase is studied by monitoring the emission spectra of the resulting excited atomic fragment Sb by means of an optical multichannel analyzer (OMA). The relative fluorescence intensities arising from different atomic states allow us to calculate the population of Sb* states produced upon photodissociation by a frequency doubled tunable pulsed dye laser. For the range of 219–249 nm of the dissociation wavelength the analysis shows a statistical distribution of the population of excited Sb states (43000–58000 cm−1) which can be described by only one parameter called “temperature”.

The derived temperature will be discussed for the dependence on the excitation wavelength and laser flux. The temperature does not increase continuously with photon energy of dissociation. A sudden drop in the temperature photon-energy diagram can be related to a change from a three to a two photon-dissociation process of SbBr3.

PACS

82.50.Fv 82.20.Rp 33.90.th 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fisanick, G.J., Gedanken, A., Eichelberger IV, T.S., Kuebler, N.A., Robin, M.B.: J. Chem Phys.75, 5215 (1981)Google Scholar
  2. 2.
    Gerrity, D.P., Rothberg, L.J., Vaida, V.: J. Phys. Chem.87, 2222 (1983)Google Scholar
  3. 3.
    Engelking, P.C.: Chem. Phys. Lett.74, 207 (1980)Google Scholar
  4. 4.
    Karny, Z., Naaman, R., Zare, R.N.: Chem. Phys. Lett.59, 33 (1978)Google Scholar
  5. 5.
    Ohmichi, N., Silberstein, J., Levine, R.D.: Chem. Phys. Lett.84, 228 (1981)Google Scholar
  6. 6.
    Corliss, C.H., Bozman, W.R.: NBS Monograph 53, transition probabilities. Washington D.C.: U.S. Government Printing Office 1962Google Scholar
  7. 7.
    Knöckel, H., Renger, M., Tiemann, E.: Chem. Phys. Lett.208, 10 (1993)Google Scholar
  8. 8.
    Osherovich, A.L., Tezikov, V.V.: Opt. Spectrosc. (USSR)43, 612 (1977)Google Scholar
  9. 9.
    Moore, C.E.: Atomic energy levels, Vol 3. NSRDS-NBS circular NO. 467 US GPO. Washington: U.S. Government Printing Office 1958Google Scholar
  10. 10.
    Thorne, A.P.: Spectrophysics. London, NY: Chapman & Hall 1988Google Scholar
  11. 11.
    Gmelins Handbuch der anorganischen Chemie, Vol Antimon B, Ser. 18. Gmelin Inst. Anorg. Chemie. Clausthal-Zellerfeld: Gmelin 1949Google Scholar
  12. 12.
    Radzig, A.A., Smirnov, B.M.: Reference data on atoms, molecules and ions. Springer series in chemical physics. Berlin Heidelberg New York: Springer 1985Google Scholar
  13. 13.
    Ben-Shaul, A., Haas, Y., Kompa, K.L., Levine, R.D.: Lasers and chemical change. Berlin Heidelberg New York: Springer 1981Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • G. Haunert
    • 1
  • E. Tiemann
    • 1
  1. 1.Institut für QuantenoptikUniversität HannoverHannoverGermany

Personalised recommendations