Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A macrophage-suppressing 40-kD protein in a case of pulmonary alveolar proteinosis

  • 25 Accesses

  • 10 Citations


Pulmonary alveolar proteinosis (PAP) is a rare disease of unknown etiology. Macrophage dysfunctions are claimed to be involved in the pathogenesis. We investigated phagocytosis and oxidative metabolism of alveolar macrophages in a case of pulmonary alveolar proteinosis. These cells phagocytize normally and phagocytizable stimulants cause a normal oxidative burst. In response to the membrane signals phorbolmyristate acetate and aggregated immunoglobulin, however, no stimulated turnover of the oxidative metabolism can be observed. A 40-kD protein found in the lavage fluid mediates this macrophage-inhibiting effect. This phenomenon may contribute to the frequent opportunistic infections seen in PAP patients. It can be concluded from our data that the high frequency of infections with opportunistic species in these patients can be reduced by therapeutic bronchoalveolar lavage. By this procedure the abnormal macrophage-suppressing protein can be washed out of the lung at an early stage of the disease.

This is a preview of subscription content, log in to check access.



alveolar macrophage


blood monocyte


bronchoalveolar lavage








pulmonary alveolar proteinosis


phorbolmyristate acetate


sheep red blood cells




  1. 1.

    Ansfield MJ, Benson BJ (1980) Identification of the immunosuppressive components of canine pulmonary surface active material. J Immunol 125:1093–1098

  2. 2.

    Bell DY, Hook GER (1979) Pulmonary alveolar proteinosis: analysis of airway and alveolar proteins. Am Rev Respir Dis 119:979–990

  3. 3.

    Bhattacharyya SN, Lynn WS, Dabrowski J, Trauner K, Hull WE (1984) Structure elucidation by one- and two-dimensional 360- and 500-MHz1H NMR of the oligosaccharide units of two glycoproteins isolated from alveoli of patients with alveolar proteinosis. Arch Biochem Biophys 231:72–85

  4. 4.

    Block LH, Vetter W, Siegenthaler W (1982) Immunpharmakologie der Kortikosteroide. Klin Wochenschr 60:1373–1384

  5. 5.

    Böyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Invest 21 [Suppl]:77–89

  6. 6.

    Claypool WD, Rogers RM, Matuschak GM (1984) Update on the clinical diagnosis, management, and pathogenesis of pulmonary alveolar proteinosis (phospholipidosis). Chest 85:550–558

  7. 7.

    Cooper TG (1981) Biochemische Arbeitsmethoden. Springer, Berlin New York, pp 125–156

  8. 8.

    Cooper TG (1981) Biochemische Arbeitsmethoden. Springer, Berlin New York, pp 157–178

  9. 9.

    Corrin B, King E (1970) Pathogenesis of experimental pulmonary alveolar proteinosis. Thorax 25:230–236

  10. 10.

    Du Bois RM, McAllister WAC, Branthwaite MA (1983) Alveolar proteinosis: diagnosis and treatment over a 10-year period. Thorax 38:360–363

  11. 11.

    Golde DW, Territo M, Finley TN, Cline MJ (1976) Defective lung macrophages in pulmonary alveolar proteinosis. Ann Intern Med 85:304–309

  12. 12.

    Goodwin BJ, Winberg JB (1982) Receptor-mediated modulation of human monocyte, neutrophil, lymphocyte, and platelet function by phorbol diesters. J Clin Invest 70:699–706

  13. 13.

    Harris JO (1979) Pulmonary alveolar proteinosis. Abnormal in vitro function of alveolar macrophages. Chest 76:156–159

  14. 14.

    Holt PG (1986) Down-regulation of immune responses in the lower respiratory tract: the role of alveolar macrophages. Clin Exp Immunol 63:261–270

  15. 15.

    Larson RK, Gordinier R (1965) Pulmonary alveolar proteinosis. Report of six cases, review of the literature and formulation of a new theory. N Engl J Med 62:292–312

  16. 16.

    Lehmeyer JE, Johnston RB (1978) Effect of anti-inflammatory drugs and agents that elevate cyclic AMP on the release of toxic oxygen metabolites by phagocytes: studies in a model of tissue-bound IgG. Clin Immunol Immunopathol 9:482–490

  17. 17.

    Lovette JB, Magovern GJ, Kent EM (1960) Alveolar proteinosis. Arch Intern Med 108:611–614

  18. 18.

    Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

  19. 19.

    Kariman K, Kylstra JA, Spock A (1984) Pulmonary alveolar proteinosis: prospective clinical experience in 23 patients for 15 years. Lung 162:223–231

  20. 20.

    McClenahan JB, Mussenden R (1974) Pulmonary alveolar proteinosis. Arch Intern Med 133:284–287

  21. 21.

    Munakata H, Nimberg RB, Snider GL, Robins AG, van Halbeek H, Vliegenhart JFG, Schmid K (1982) The structure of the carbohydrate units of the 36K glycoprotein derived from the lung lavage of a patient with alveolar proteinosis by high resolution1H-NMR spectroscopy. Biochem Biophys Res Commun 108:1401–1405

  22. 22.

    Ramirez RJ, Harlan WR (1968) Pulmonary alveolar proteinosis. Nature and origin of alveolar lipid. Am J Med 45:502–512

  23. 23.

    Rosen SH, Castleman B, Liebow AA (1958) Pulmonary alveolar proteinosis. N Engl J Med 258:1123–1142

  24. 24.

    Rühle KH, Köhler D, Costabel U, Schmitz-Schumann M, Matthys H (1986) Therapeutische Lavage bei Alveolarproteinose. Prax Klin Pneumol 40:20–23

  25. 25.

    Trush MA, Wilson ME, van Dyke K (1978) Bioluminescence and chemiluminescence. In: De Luca MA (ed) Methods in enzymology, vol LVII. Academic Press, New York, p 402

  26. 26.

    Tucker SB, Pierre RV, Jordan RE (1977) Rapid identification of monocytes in a mixed mononuclear cell preparation. J Immunol Methods 14:267–272

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Müller-Quernheim, J., Schopf, R.E., Benes, P. et al. A macrophage-suppressing 40-kD protein in a case of pulmonary alveolar proteinosis. Klin Wochenschr 65, 893–897 (1987). https://doi.org/10.1007/BF01745499

Download citation

Key words

  • Pulmonary alveolar proteinosis
  • Alveolar macrophages
  • Oxidative metabolism