Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

D600 binding sites on voltage-sensors for excitationcontraction coupling in frog skeletal muscle are intracellular


Charge movements were measured in frog cut twitch fibres mounted in a double Vaseline gap chamber at 14° C with 30μM D600 in the external solution. TEST-minus-CONTROL current traces appear normal with a hump current component (Iγ) embedded in the decay phase of the early current component (Iβ) in the ON-segment and an exponentially decaying current transient in the OFF-segment. When a conditioning depolarization to 0 mV is applied at around 6° C, charge movement is greatly reduced but not completely suppressed and no hump component can be visualized in the ON-segment. In addition, an extra capacitive component is generated having a time course slower than, and a polarity opposite to, that of the usual charge movement. This extra component makes the transients in both the ON- and OFF-segments appear bisphasic. When temperature is restored to 14° C, the bisphasic nature is greatly enhanced. After the application of a conditioning hyperpplarization, the shape of the TEST-minus-CONTROL current trace is converted back to that before paralysis, but the total amount of charge reprimed is less than 100% of control. In general, more Qβ is reprimed than Qγ, and the amount of Qγ reprimed varies over a wider range from fibre to fibre than that of Qβ. Extracellularly applied D890 cannot reproduce the blocking effect of D600 whereas intracellularly applied D890 can. As D890 is permanently charged and cannot permeate through the plasma membranes, it can be concluded that the binding sites for D600/D890 on the charge movement macromolecules must be on the myoplasmic side. This adds another parallelism between the charge movement entities and L-type calcium channels. However, the specific prerequisites for the blockage of the former not shared by the latter differentiates the two physiological units.

This is a preview of subscription content, log in to check access.


  1. Adrian, R. H. &Almers, W. (1976) Charge movement in the membrane of striated muscle.J. Physiol. 254, 339–60.

  2. Adrian, R. H., Chandler, W. K. &Rakowski, R. F. (1976) Charge movement and mechanical repriming in skeletal muscle.J. Physiol. 254, 361–88.

  3. Adrian, R. H. &Peres, A. R. (1979) Charge movement and membrane capacity in frog muscle.J. Physiol. 289, 83–97.

  4. Almers, W., McCleskey, E. W. &Palade, P. T. (1985) Calcium currents in vertebrate skeletal muscle. InCalcium in biological systems edited byRubin, R. P., Weiss, G. B. &Putney, W., jr. Plenum Publishing Corp., New York.

  5. Berwe, D., Gottschalk, G. &Luttgau, H. Ch. (1987) Effects of the calcium antagonist gallopamil (D600) upon excitation-contraction coupling in toe muscle fibres of the frog.J. Physiol. 385, 693–707.

  6. Bregestovski, P. D., Miledi, R. &Parker, I. (1980) Blocking of frog endplate channels by the organic calcium antagonist D600.Proc. R. Soc. Lond. B211, 15–24.

  7. Brum, G. &Rios, E. (1987) Intramembrane charge movement in frog skeletal muscle fibres. Properties of Charge 2.J. Physiol. 387, 489–517.

  8. Caputo, C. &Bolanos, P. (1987) Contractile inactivation on frog skeletal muscle fibers. The effects of low calcium, tetracaine, dantrolene, D-600 and nifedipine.J. Gen. Physiol. 89, 421–42.

  9. Chandler, W. K. &Hui, C. S. (1990) Membrane capacitance in a frog cut twitch fiber mounted in a double Vaseline-gap chamber.J. Gen. Physiol. 96, 225–56.

  10. Chandler, W. K., Rakowski, R. F. &Schneider, M. F. (1976) A nonlinear voltage dependent charge movement in frog skeletal muscle.J. Physiol. 254, 245–83.

  11. Cooper, K. E., McCarthy, R. T., Milton, R. L. &Eisenberg, R. S. (1984) Calcium antagonists modify contraction of skeletal muscle fibers.Biophys. J. 45, 232a.

  12. Donaldson, S. K., Dunn, R., Jr. &Huetteman, D. (1984) Peeled mammalian skeletal muscles fibers: reversible block of Cl-induced tension transients by D600 and D890.Biophys. J. 45, 46a.

  13. Eisenberg, R. S., McCarthy, R. T. &Milton, R. L. (1983) Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600.J. Physiol. 341, 495–505.

  14. Erdmann, R. &Luttgau, H. ch. (1989) The effect of the phenylalkylamine D888 (Devapamil) on force and Ca2+-current in isolated frog skeletal muscle fibres.J. Physiol. 413, 521–41.

  15. Fairhurst, A. S., Whittaker, M. L. &Ehlert, F. J. (1980) Interactions of D600 (methoxyverapamil) and local anesthetics with rat brainα-adrenergic and muscarinic receptors.Biochem. Pharmac. 29, 155–62.

  16. Fill, M. &Best, P. M. (1989) Block of contracture in skinned frog skeletal muscle fibers by calcium antagonists.J. Gen. Physiol. 93, 1–21.

  17. Fill, M., Fitts, R., Pizzaro, G., Rodriguez, M. &Rios, E. (1988) Effects of Ca agonists and antagonists on E-C coupling in skeletal muscle fibers.Biophys. J. 53, 603a.

  18. Fleckenstein, A. (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle.Ann. Rev. Pharmacol. Toxicol. 17, 149–66.

  19. Galper, J. B. &Catterall, W. A. (1979) Inhibition of sodium channels by D600.Molec. Pharmacol. 15, 174–8.

  20. Hescheler, J., Pelzer, D., Trube, G. &Trautwein, W. (1982) Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane?Pflügers Arch. 393, 287–91.

  21. Hess, P., Lansman, J. B. &Tsien, R. W. (1984) Different modes of Ca channel gating behaviour favoured by dihyropyridine Ca agonists and antagonists.Nature 311, 538–44.

  22. Hess, P., Lansman, J. B. &Tsien, R. W. (1986) Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells.J. Gen. Physiol. 88, 293–320.

  23. Hille, B. &Campbell, D. T. (1976) An improved vaseline gap voltage clamp for skeletal muscle fibers.J. Gen. Physiol. 67, 265–93.

  24. Hui, C. S. (1983) Pharmacological studies of charge movement in frog skeletal muscle.J. Physiol. 337, 509–29.

  25. Hui, C. S. (1989) Contractile properties of frog twitch fibres after D600 paralysis.J. Musc. Res. Cell Motil. 10, 473–88.

  26. Hui, C. S. &Chandler, W. K. (1990) Intramembranous charge movement in a frog cut twitch fiber mounted in a double Vaseline gap chamber.J. Gen. Physiol. 96, 257–97.

  27. Hui, C. S. &Milton, R. L. (1987) Suppression of charge movement in frog skeletal muscle by D600.J. Musc. Res. Cell Motil. 8, 195–208.

  28. Hui, C. S., Milton, R. L. &Eisenberg, R. S. (1984) Charge movement in skeletal muscle fibers paralyzed by the calcium entry blocker D600.Proc. Natn. Acad. Sci. (USA) 81, 2582–5.

  29. Irving, M., Maylie, J., Sizto, N. L. &Chandler, W. K. (1987) Intrinsic optical and passive electrical properties of cut frog twitch fibers.J. Gen. Physiol. 89, 1–40.

  30. Kass, R. S. &Tsien, R. W. (1975) Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers.J. Gen. Physiol. 66, 169–92.

  31. Kovacs, L., Rios, E. &Schneider, M. F. (1983) Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye.J. Physiol. 343, 161–96.

  32. Lee, K. S. &Tsien, R. W. (1983) Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells.Nature 302, 790–4.

  33. McCleskey, E. W. (1985) Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle.J. Physiol. 361, 231–49.

  34. McDonald, T. F., Pelzer, D. &Trautwein, W. (1984a) Cat ventricular muscle treated with D600: effects on calcium and potassium currents.J. Physiol. 352, 203–16.

  35. McDonald, T. F., Pelzer, D. &Trautwein, W. (1984b) Cat ventricular muscle treated with D600: characteristics of calcium channel block and unblock.J. Physiol. 352, 217–41.

  36. Melzer, W., Schneider, M. F., Simon, B. J. &Szucs, G. (1986) Intramembrane charge movement and calcium release in frog skeletal muscle.J. Physiol. 373, 481–511.

  37. Melzer, W. &Pohl, B. (1987) Effects of D600 on the voltage sensor for Ca release in skeletal muscle fibres of the frog.J. Physiol. 390, 151P.

  38. Pizarro, G., Brum, G., Fill, M., Fitts, R., Rodriguez, M., Uribe, I. &Rios, E. (1988) The voltage sensor of skeletal muscle excitation-contraction coupling: a comparison with Ca++ channels. InThe Ca Channel: Structure, Function and Implications (edited byMorad, M., Nayler, W., Kazda, S. &Schramm, M.) Springer-Verlag, Berlin.

  39. Pizarro, G., Fitts, R. &Rios, E. (1988) Selectivity of a cationbinding membrane site essential for EC coupling in skeletal muscle.Biophys. J. 53, 645a.

  40. Rios, E. &Brum, G. (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle.Nature 325, 717–20.

  41. Sanchez, J. A. &Stefani, E. (1978) Inward calcium current in twitch muscle fibres of the frog.J. Physiol. 283, 197–209.

  42. Siebler, M. &Schmidt, H. (1987) D600 prolongs inactivation of the contractile system in frog twitch fibres.Pflügers Arch. 410, 75–82.

  43. Walsh, K. B., Bryant, S. H. &Schwartz, A. (1987) Suppression of charge movement by calcium antagonists is not related to calcium channel block.Pflügers Arch. 409, 217–19.

  44. Woolson, R. F. (1987)Statistical methods for the analysis of biomedical data. Wiley, New York.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hui, C.S. D600 binding sites on voltage-sensors for excitationcontraction coupling in frog skeletal muscle are intracellular. J Muscle Res Cell Motil 11, 471–488 (1990).

Download citation


  • Current Component
  • Current Transient
  • Charge Movement
  • Current Trace
  • Vaseline