Mathematical systems theory

, Volume 13, Issue 1, pp 131–180 | Cite as

Infinite trees in normal form and recursive equations having a unique solution

  • Bruno Courcelle
Article

Abstract

A system of recursive equations isC-univocal if it has a unique solution modulo the equivalence associated with a classC of interpretations. This concept yields simplified proofs of equivalence of recursive program schemes and correctness criteria for the validity of certain program transformations, provided one has syntactic easily testable conditions forC-univocality.

Such conditions are given for equational classes of interpretations. They rest upon another concept: thenormal form of an infinite tree with respect to a tree rewriting system. This concept yields a simplified construction of the Herbrand interpretation of certain equational classes of interpretations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Berry and B. Courcelle, Canonical forms in stable discrete interpretations, in Automata, Languages and Programming, 3rd colloquium (S. Michaelson and R. Milner eds.) Edinburgh University Press, Edinburgh, 168–188 (1976).Google Scholar
  2. 2.
    S. Bloom, Varieties of ordered algebras.,J. Comput. System Sci. 13 200–212 (1976).Google Scholar
  3. 3.
    R. Burstall and J. Darlington, A transformation system for developing recursive programs,J. Assoc. Comput. Mach. 24 44–67 (1977).Google Scholar
  4. 4.
    B. Courcelle, A Representation of trees by languages, part II,Theor. Comput. Sci. 7 25–55 (1978).Google Scholar
  5. 5.
    B. Courcelle, Arbres Infinis et Systèmes d'Equations,RAIRO Informatique Théorique, 13 31–48 (1979).Google Scholar
  6. 6.
    B. Courcelle and I. Guessarian, On some classes of interpretations,J. Comput. System Sci. 17 388–413 (1978).Google Scholar
  7. 7.
    B. Courcelle and M. Nivat, Algebraic Families of Interpretations, 17th Annual IEEE Symposium on Foundations of Computer Science, Houston 137–146 (1976).Google Scholar
  8. 8.
    B. Courcelle and M. Nivat, The algebraic semantics of recursive program schemes, in Mathematical Foundations of Computer Science 1978, (Winkowski ed.)Lecture Notes in Computer Science, Springer-Verlag, New-York 64 16–30 (1978).Google Scholar
  9. 9.
    B. Courcelle and J. C. Raoult, Completions of Ordered Magmas,Fundamenta Informaticae, (to appear).Google Scholar
  10. 10.
    B. Courcelle and J. Vuillemin, Completeness results for the equivalence of recursive schemes,Journal Comput. System Science, 179–197 (1976).Google Scholar
  11. 11.
    J. Darlington and R. Burstall, A system which automatically improves programs,Acta Informatica 6 41–60 (1976).Google Scholar
  12. 12.
    C. Elgot, S. Bloom, and R. Tindell, The algebraic Structure of rooted trees,Journal Comput. System Science 16 362–399 (1978).Google Scholar
  13. 13.
    E. Friedman, The inclusion problem for simple languages,Theor. Comput. Sci. 1 297–316 (1976).Google Scholar
  14. 14.
    E. Friedman, Equivalence Problem for deterministic context-free languages and monadic recursion schemes,J. Comput. System Science 14 334–359 (1977).Google Scholar
  15. 15.
    J. Goguen et al., Initial algebra semantics and continuous algebras.J. Assoc. Comput. Mach. 24 68–95 (1977).Google Scholar
  16. 15a.
    I. Guessarian, Equivalences sémantiques et familles d'interprétations, Thesis, University Paris VII (1975).Google Scholar
  17. 16.
    G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems. Proceedings of the 18th annual IEEE symposium on Foundations of Computer Science, Providence, Rhode Island 30–45 (1977).Google Scholar
  18. 17.
    G. Huet and B. Lang, Proving and applying program transformations expressed with 2nd order patterns,Acta Informatica 11 31–55 (1978).Google Scholar
  19. 18.
    G. Huet and D. Lankford, On the uniform halting problem for term rewriting systems, Laboria report 283 (1978).Google Scholar
  20. 19.
    D. Knuth and P. Bendix, Simple word problems in universal algebras, Computational problems in abstract algebra, (Leech ed.) Pergamon Press 263–297 (1970).Google Scholar
  21. 20.
    L. Kott, About transformation System: a theoretical study, in Transformations de programmes, (B. Robinet ed.)Dunod-Informatique, Paris (1978).Google Scholar
  22. 21.
    Z. Manna and J. Vuillemin, Fixpoint approach to the theory of Computation,CACM 15 528–536 (1972).Google Scholar
  23. 21a.
    Z. Manna and R. Waldinger, Knowledge and reasoning about program synthesis,Artificial Intelligence Journal 6 175–208 (1975).Google Scholar
  24. 22.
    G. Markowsky and B. Rosen, Bases for Chain-Complete posets,IBM Journ. of Res. and Dev. 20 138–147 (1976).Google Scholar
  25. 23.
    J. McCarthy, A basis for a mathematical theory of Computation,Computer Programming and Formal Systems, (P. Braffort and D. Hirschberg ed.) North-Holland, Amsterdam (1963).Google Scholar
  26. 24.
    J. McCarthy, Towards a mathematical science of computations, Proc. IFIP Congress 1962, North-Holland Pub. Co., Amsterdam 27–34.Google Scholar
  27. 25.
    J. Meseguer, Completions, Factorizations and colimits for ω-posets, Semantics and theory of computation reportn° 13, UCLA, October 1978.Google Scholar
  28. 26.
    R. Milner, Flowgraphs and Flow Algebras, Report CSR-5-77, Edinburgh (1977).Google Scholar
  29. 27.
    M. Nivat, On the interpretation of recursive polyadic program schemes, Istituto Nazionale de Alta Matematica,Symposia Mathematica 15 255–281 (1975).Google Scholar
  30. 28.
    M. O'Donnell, Computing in systems described by equations,Lecture Notes in Computer Science Springer-Verlag, New York 58 (1977).Google Scholar
  31. 29.
    D. Park, Fixpoint induction and proofs of program properties,Machine Intelligence 5 (Meltzer and Michie eds.) Edinburgh University Press, Edinburgh 59–78 (1970).Google Scholar
  32. 30.
    J. C. Raoult, Resultats de décidabilité relatifs aux systèmes de réécriture de termes, to appear.Google Scholar
  33. 31.
    J. C. Raoult and J. Vuillemin, Operational and Semantic equivalence between recursive programs, Proc. of 10th annual ACM-SIGACT Symposium on Theory of Computing, San Diego, California 75–85 (1978).Google Scholar
  34. 32.
    B. Rosen, Tree-manipulating systems and Church-Rosser Theorems,J. Assoc. Comput. Mach. 20 160–187 (1973).Google Scholar
  35. 33.
    B. Rosen, Program equivalence and context-free grammars,J. Comput. System Sci. 11 358–374 (1975).Google Scholar
  36. 34.
    J. Vuillemin, Proof techniques for recursive programs, Ph. D. Stanford (1972).Google Scholar
  37. 35.
    E. Wagner et al., Programming languages as mathematical objects, same volume as [8], 84–101.Google Scholar
  38. 36.
    J. B. Wright et al., A uniform approach to inductive posets and inductive closure,Theor. Comput. Sci. 7 (1978).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Bruno Courcelle
    • 1
  1. 1.Mathématiques-InformatiqueUniversité de Bordeaux-ITalenceFrance

Personalised recommendations