Journal of Molecular Evolution

, Volume 7, Issue 4, pp 269–311 | Cite as

Evolutionary processes and evolutionary noise at the molecular level

II. A Selectionist Model for Random Fixations in Proteins
  • Emile Zuckerkandl


On account, notably, of a competition between different component functions for individual sites in polypeptide chains, each protein molecule represents a functional compromise, with some functions optimized, but the overall state of the molecule −suboptimal−. The proposal is made that the selection coefficient relating to a protein molecule under given conditions can in principle be broken down into partial selection coefficients relevant to the different functions that the molecule carries out. At generalfunction sites, each fixation improves some function, while others deteriorate, at first nonsignificantly, and the overall adaptive state of the molecule fluctuates around its maximum. A selective mechanism is described whereby kaleidoscopic changes in primary structure at variable sites are indefinitely promoted, independently of any environmental changes and with the molecule remaining close to a state of maximal overall adaptation. The paradoxical aspect of this proposal is analyzed. The implication of specific functions in substitutions at general-function sites is noted. Further, it is shown that a certain category of changes in the internal environment of the organism can be integrated into the constantenvironment model for selection. Genetic sufficiency is considered a notion more adequate than genetic optimality for describing biological fitness and for providing a basis for the present model. On this basis selection occurs without genetic load. Multipolymorphism is one of the consequences. Several lines of evidence, in particular observations on polymorphism in deep sea organisms, seem to support the model. It is pointed out that it provides a theoretical foundation for a molecular evolutionary clock. The theoretical constancy of the clock depends on the constancy of functional density. The question of the evolution of functional density is examined. Comparisons of observed substitution frequencies with values expected on a random basis are rejected as a measure of the contribution to evolution of nondetermination. They are considered to reflect a hierarchy in the resistance of the molecules to different amino acid residues as substituents. A limited component of −true− randomness, again accompanied by selection, is on the other hand provided by the model. Most amino acid substitutions are considered evolutionary noise, even though noise compatible with selection. It is proposed that evolutionarily significant substitutions may be identified by monitoring changes in functional density and weighted functional density.

Key words

Protein Evolution Natural Selection Random Substitutions Neutral Substitutions Partial Selection Coefficients Genetic Sufficiency Genetic Load Polymorphism Molecular Evolutionary Clock Functional Density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayala, F.J., Anderson, W.W. (1973). Nature New Biology 241, 274Google Scholar
  2. Ayala, F.J., Tracey, M.L. (1974). Proc.Natl.Acad.Sci. 71, 999Google Scholar
  3. Ayala, F.J., Valentine, J.W., Hedgecock, D., Barr, L.G. (1975). Evolution 29, 203Google Scholar
  4. Bernstein, S.S., Throckmorton, L.H., Hubby, J.L. (1973). Proc.Natl.Acad.Sci. 70, 3928Google Scholar
  5. Boyer, S.H., Noyes, A.H., Timmons, C.F., Young, R.A. (1972). J.Hum.Evol. 1, 515Google Scholar
  6. Cantor, C.R., Jukes, T.H. (1966). Proc.Natl.Acad.Sci. 56, 177Google Scholar
  7. Citri, N., Pollock, M.F. (1966). Advan.Enzymol. 28, 237Google Scholar
  8. Clarke, B. (1972). Am.Nat. 106, 1Google Scholar
  9. Clegg, M.T., Allard, R.W., Kahler, A.L. (1972). Proc.Natl.Acad.Sci. 69, 2474Google Scholar
  10. Dayhoff, M.O. (1972). Atlas of protein sequence and structure, Vol. 5. Washington, D.C.: Natl.Biomedical Research FoundationGoogle Scholar
  11. Derancourt, J., Lebor, A.S., Zuckerkandl, E. (1967). Bull.Soc.Chim.Biol. 49, 577Google Scholar
  12. Dickerson, R.E. (1971). J.Mol.Biol. 57, 1Google Scholar
  13. Ewens, W.J. (1972). Am.Nat. 106, 273Google Scholar
  14. Fisher, R.A. (1958). The genetical theory of natural selection, 2nd edition. New York: Dover PublicationsGoogle Scholar
  15. Fitch, W.M. (1970). System.Zool. 19, 99Google Scholar
  16. Fitch, W.M. (1972). Haematologie und Bluttransfusion 10, 199Google Scholar
  17. Fitch, W.M. (1973). Ann.Rev.Genet. 7, 343Google Scholar
  18. Fitch, W.M. (1975). An evaluation of molecular evolutionary clocks. In: Molecular study of biological evolution, F.J. Ayala, ed. Sunderland, Mass.: Sinauer AssociatesGoogle Scholar
  19. Flynn, U.E.H., Sullivan, B. (1974). Biochem.Genet. 11, 373Google Scholar
  20. Gooch, J.L., Schopf, T.J.M. (1972). Evolution 26, 545Google Scholar
  21. Goodman, M. (1963). Man's place in the phylogeny of the primates as reflected in serum proteins. In: Classification and human evolution, S.L. Washburn, ed., p. 204. Chicago: Aldine publishing Co.Google Scholar
  22. Goodman, M. (1964). The specificity of proteins and the process of primate evolution. In: Protides of the biological fluids, H. Peeters, ed., p. 70. Amsterdam: ElsevierGoogle Scholar
  23. Goodman, M. (1976). Towards a genealogical description of the primates. In: Molecular anthropology, M. Goodman, R.E. Tashian, eds. New York: Plenum (in press)Google Scholar
  24. Goodman, M., Moore, G.W., Matsuda, G. (1975). Nature 253, 603Google Scholar
  25. Haldane, J.B.S. (1957). J.Genet. 55, 511Google Scholar
  26. Harris, H. (1966). Proc.Roy.Soc. (London) ser.B 164, 298Google Scholar
  27. Hill, R.L., Brew, K., Vanaman, Th.C., Trayer, J.P., Mattock, P. (1969). Brookhaven Biol. 21, 139Google Scholar
  28. Huang, S.L., Singh, M., Kojima, K.I. (1971). Genetics 68, 97Google Scholar
  29. Ingram, V.M. (1961). Nature 189, 704Google Scholar
  30. Kermack, K.A. (1954). Phil.Trans.Roy.Soc.LondonB 237, 375Google Scholar
  31. Kimura, M. (1968a). Nature 217, 624Google Scholar
  32. Kimura, M. (1968b). Genet.Res. 11, 247Google Scholar
  33. Kimura, M., Ohta, T. (1971). J.Mol.Evol. 1, 18Google Scholar
  34. Kimura, M., Weiss, G.H. (1964). Genetics 49, 561Google Scholar
  35. King, J.L. (1967). Genetics 55, 483Google Scholar
  36. King, J.L., Jukes, T.H. (1969). Science 164, 788Google Scholar
  37. King, J.L., Ohta, T. (1975). Genetics 79, 681Google Scholar
  38. King, R.C. (1968). A dictionary of genetics. New York: Oxford University PressGoogle Scholar
  39. Kramer, F.R., Mills, D.R., Cole, P.E., Nishihara, T., Spiegelman, S. (1974). J.Mol.Biol. 89, 719Google Scholar
  40. Lewontin, R.C. (1974). The genetic basis of evolutionary change. New York: Columbia University PressGoogle Scholar
  41. Lewontin, R.C., Hubby, J.L. (1966). Genetics 54, 595Google Scholar
  42. Martin, F. (1974). Etude de l'hémoglobine d'un Sélacien,Scylliorhinus canicula. Thèse de doctorat és sciences physiques, Université des Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  43. Maynard Smith, J. (1968). Nature 219, 1114Google Scholar
  44. Mayr, E. (1963). Animal species and evolution. Cambridge, Mass.: Harvard Belknap PressGoogle Scholar
  45. Mayr, E. (1970). Populations, species, and evolution. Cambridge, Mass.: Belknap Press of Harvard University PressGoogle Scholar
  46. Milkman, R.D. (1967). Genetics 55, 493Google Scholar
  47. O'Donald, P. (1969). Nature 221, 15Google Scholar
  48. Ohta, T. (1972). J.Mol.Evol. 1, 305Google Scholar
  49. Ohta, T., Kimura, M. (1971). J.Mol.Evol. 1, 18Google Scholar
  50. Pasteur, G. (1974). Mém.Soc.Zool.France 37, 473Google Scholar
  51. Pauling, L., Zuckerkandl, E. (1963). Acta Chem.Scand. 17, S9Google Scholar
  52. Romero-Herrera, A.E., Lehmann, H., Joysey, K.A., Friday, A.E. (1973). Nature 246, 389Google Scholar
  53. Sanders, H.L. (1968). Am.Nat. 102, 243Google Scholar
  54. Sarich, V.W., Wilson, A.C. (1967). Proc.Natl.Acad.Sci. 58, 142Google Scholar
  55. Sarich, V.W., Wilson, A.C. (1973). Science 179, 1144Google Scholar
  56. Selander, R.K., Hunt, W.G., Yang, S.Y. (1969). Evolution 23, 379Google Scholar
  57. Selander, R.K., Smith, M.H., Yang, S.Y., Johnson, W.E., Gentry, G.B. (1971). Biochemical polymorphism and systematics in the genusPeromyscus. In: Studies in genetics VI, M.R. Wheeler, ed., p. 49. Austin, Texas: University of Texas Publ.No.7103Google Scholar
  58. Selander, R.K., Yang, S.Y., Hunt, W.G. (1969). Polymorphism in esterases and hemoglobin in wild populations of the house mouse (Mus musculus). In: Studies in genetics V, M.R. Wheeler, ed., p. 271. Austin, Texas: University of Texas Publ.No.6918Google Scholar
  59. Stenzel, P. (1974). Nature 252, 62Google Scholar
  60. Strickberger, M.W. (1968). Genetics. New York: MacmillanGoogle Scholar
  61. Sved, J.A., Reed, T.E., Bodmer, W.F. (1967). Genetics 55, 469Google Scholar
  62. Valentine, J.W., Ayala, F.J. (1975). Deep Sea Res. 22, 37Google Scholar
  63. Van Valen, L. (1974). J.Mol.Evol. 3, 89Google Scholar
  64. Wallace, B. (1958). Evolution 12, 532Google Scholar
  65. Woese, C.R. (1971). J.Theoret.Biol. 33, 29Google Scholar
  66. Yčas, M. (1974). J.Theoret.Biol. 44, 145Google Scholar
  67. Zuckerkandl, E. (1974). Biochim. 56, 937Google Scholar
  68. Zuckerkandl, E. (1975). J.Mol.Evol. 7, 1Google Scholar
  69. Zuckerkandl, E. (1976a). J.Mol.Evol. 7, 167Google Scholar
  70. Zuckerkandl, E. (1976b). Programs of gene action and progressive evolution. In: Molecular anthropology, M. Goodman, R.E. Tashian, eds. New York: Plenum (in press)Google Scholar
  71. Zuckerkandl, E., Derancourt, J., Vogel, H. (1971). J.Mol.Biol. 59, 473Google Scholar
  72. Zuckerkandl, E., Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In: Evolving genes and proteins, V. Bryson, H.J. Vogel, eds., p. 97. New York: Academic PressGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Emile Zuckerkandl
    • 1
    • 2
  1. 1.Marine Biological LaboratoryWoods HoleUSA
  2. 2.Department of Biological SciencesUniversity of DelawareNewarkUSA

Personalised recommendations