Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Shape optimization of an elastic thin shell under various criteria

Abstract

The aim of this study is to propose a methodology for optimizing the shape (middle surface and thickness) of an elastic general thin shell (i) under different criteria: minimization of the weight, of the stresses, of the strain energy; (ii) with or without constraints: if any, these can be bounds on some displacements, on some stresses.

This is a common problem in real life, the engineer has to construct structures which have the best mechanical behaviour and the best price; the price is often proportional to the weight of the structure.

In this paper only the general continuous formulation of the problems is considered. From this strong basis a corresponding discrete formulation and some industrial applications will subsequently be developed.

This is a preview of subscription content, log in to check access.

References

  1. Banichuk, N.V. 1983:Optimization of the shapes of elastic bodies (English translation by Haug, E.J.). New York: Plenum Press

  2. Banichuk, N.V.; Larichev, A.D. 1984: Optimal design problems for curvilinear shallow elements of structures.Opt. Cont. Applic. & Math. 5, 197–205

  3. Bernadou, M. 1986: Some mathematical results related to nonlinear thin shell problems. In: Pietraszkiewicz, W. (ed.)Lecture notes in engineering 19, pp. 33–46. Berlin, Heidelberg, New York: Springer

  4. Bernadou, M.; Boisserie, J.M. 1982:The finite element method in thin shell theory: application to arch dam simulations. Boston: Birkhäuser

  5. Bernadou, M.; Ciarlet, P.G. 1976: Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter. In: Glowinski, R.; Lions, J.L. (eds.)Computing methods in applied sciences and engineering, pp. 89–136,Lecture notes in economics and mathematical systems Vol. 134. Berlin, Heidelberg, New York: Springer

  6. Bernadou, M.; Ciarlet, P.G.; Hu, J. 1984: On the convergence of the semi-discrete incremental method in nonlinear threedimensional elasticity.J. Elasticity 14, 425–440

  7. Bernadou, M.; Oden, J.T. 1980: An existence theorem for a class of nonlinear shallow shell problemsJ. Math. Pures Appl. 60, 285–308

  8. Budiansky, B.; Sanders, J.L. 1967: On the best first order linear shell theory.Prog. in Appl. Mech. (W. Prager anniversary volume) 129–140. New York: MacMillan

  9. Céa, J. 1986: Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coûtM2AN-RAIRO 20, 371–402

  10. Chenais, D. 1987: Optimal design of midsurface of shells: differentiability proof and sensitivity computation.J. Appl. Math. Opt. 16, 93–133

  11. Chenais, D.; Rousselet, B. 1984: Différentation du champ de déplacements dans une arche par rapport à la forme de la surface moyenne en élasticité linéaire.C.R. Acad. Sci. Paris Série A,298, 533–536

  12. Ciarlet, P.G. 1987:Introduction to numerical linear algebra and optimization. Cambridge: Cambridge University Press

  13. Figueiredo (de), I. 1989:Modèles de coques élastiques non linéaires; méthode asymptotique et existence de solutions. Doctoral Thesis, University Pierre et Marie Curie, Paris VI

  14. Fortin, M.; Glowinski, R. 1982:Méthodes de Lagrangien augmenté. Application à la résolution numérique de problèmes aux limites. Paris: Dunod-Bordas

  15. Haug, E.J.; Choi, K.K.; Komkov, V. 1986:Structural design sensitivity analisis. New York: Academic Press

  16. Hlavacek, I. 1983: Optimisation of the shape of axisymmetric shells.Aplikace Matematiky 28, 269–294

  17. Koiter, W.T. 1966: On the nonlinear theory of thin elastic shells.Proc. Kon. Ned. Akad. Wetensch. B69, 1–54

  18. Koiter W.T. 1970: On the foundations of the linear theory of thin elastic shells.Proc. Kon. Ned. Akad. Wetensch. B73, 169–195

  19. Lions, J.L. 1969:Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod

  20. Mota Soares, C.M.; Barbosa, J.I.; Pinto, P. 1987: Optimal design of axisymmetric shell structures. In: Nikulari, A. (ed.)Proc. Fourth SAS World Conference, FEMCAD 2, pp 68–78. Paris: IITT-International

  21. Palma, F.J. 1989:Optimizacion de forma del modelo lineal de cascaras delgadas de W.T. Koiter. Doctoral Thesis, University of Malaga

  22. Pietraszkiewicz, W.; Szwabowicz, M. 1981: Entirely Lagrangian nonlinear theory of thin shells.Archives of Mechanics 33, 273–288

  23. Prager, W. 1974:Introduction to structural optimization. Int. Centre for Mech. Sci.212. Udine. Berlin, Heidelberg, New York: Springer

  24. Rousselet, B. 1982: Note on design differentiability of the static response of elastic structures.J. Struct. Mech. 10, 353–358

  25. Rousselet, B. 1986: Principes d'analyse de sensitivité, utilisation pour la conception optimale.Rapports de Recherche INRIA,521

  26. Rousselet, B. 1987: Shape design sensitivity from partial differential equation to implementation.Eng. Opt. 11, 151–171

  27. Rousselet, B. 1989: Shape optimization of structures with state constraints. In: Bermudez, A. (ed.)Control of partial differential equations. Berlin, Heidelberg, New York: Springer

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bernadou, M., Palma, F.J. & Rousselet, B. Shape optimization of an elastic thin shell under various criteria. Structural Optimization 3, 7–21 (1991). https://doi.org/10.1007/BF01743485

Download citation

Keywords

  • Civil Engineer
  • Industrial Application
  • Mechanical Behaviour
  • Real Life
  • Thin Shell