Structural optimization

, Volume 6, Issue 4, pp 263–267 | Cite as

The Michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: An asymptotic study

  • M. P. Bendsøe
  • R. B. Haber
Technical Papers


It is shown that Michell's problem of least-weight truss layouts can be obtained by asymptotic expansion of the optimized strain and complementary energies derived for minimum compliance topology of perforated plates in plane stress.


Civil Engineer Asymptotic Expansion Topology Optimization Plane Stress Perforated Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achtziger, W.; Bendsøe, M.P.; Ben-Tal, A.; Zowe, J. 1992: Equivalent displacement based formulations for maximum strength truss topology design.IMPACT of Computing in Science and Engineering 4, 315–345Google Scholar
  2. Allaire, G.; Kohn, R.V. 1993a: Topology optimization and optimal shape design using homogenization. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 207–218. Dordrecht: KluwerGoogle Scholar
  3. Allaire, G.; Kohn, R.V. 1993b: Optimal design for minimum weight and compliance in plane stress using extremal microstructures.European J. Mech. A. (to appear)Google Scholar
  4. Bendsøe, M.P.; Ben-Tal, A.; Zowe, J. 1993: Optimization methods for truss geometry and topology design.DCAMM Report No. S64, The Danish Center for Applied Mathematics and Mechanics, The Technical University of Denmark, Lyngby, DenmarkGoogle Scholar
  5. Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method.Comp. Meth. Appl. Mech. Engrg. 71, 197–224Google Scholar
  6. Hemp, W.S. 1973:Optimum structures. Oxford: Clarendon PressGoogle Scholar
  7. Jog, C.; Haber, R.; Bendsøe, M.P. 1993a: A displacement-based topology design method with self-adaptive layered materials. In: Bendsøe, M.P.; Mota Soares, C.A. (eds.)Topology optimization of structures, pp. 219–238. Dordrecht: KluwerGoogle Scholar
  8. Jog, C.; Haber, R.B.; Bendsøe, M.P. 1993b: Topology design with optimized, self-adaptive materials.DCAMM Report No. 457. AlsoInt. J. Num. Meth. Engng. (to appear)Google Scholar
  9. Lagache, J.-M. 1981: Treillis de volume minimal dans une region donnée.J. de Mécanique 20, 415–448Google Scholar
  10. Lewiński, T.; Zhou, M.; Rozvany, G.I.N. 1993: Exact least-weight truss layouts for rectangular domains with various support conditions. Preprint, FB 10, Universität Essen, GermanyGoogle Scholar
  11. Lipton, R. 1992: On implementation of partial relaxation for optimal structural compliance problems. In: Pedersen, P. (ed.)Optimal design with advanced materials, pp. 457–468. Amsterdam: ElsevierGoogle Scholar
  12. Michell, A.G.M. 1904: The limits of economy of material in frame structures.Phil. Mag. 8, 589–597Google Scholar
  13. Ong, T.G.; Rozvany, G.I.N.; Szeto, W.T. 1988: Least-weight design of perforated elastic plates for given compliance: non-zero Poisson's ratio.Comp. Meth. Appl. Mech. Eng. 66, 301–322Google Scholar
  14. Pedersen, P. 1989: On optimal orientation of orthotropic materials.Struct. Optim. 1, 101–106Google Scholar
  15. Prager, W.; Rozvany, G.I.N. 1977: Optimization of structural geometry. In: Bednarek, A.R.; Cesari, L.Dynamical systems, pp. 265–293. New York: Academic PressGoogle Scholar
  16. Rozvany, G.I.N. 1976:Optimal design of flexural systems. Oxford: Pergamon PressGoogle Scholar
  17. Rozvany, G.I.N. 1989:Structural design via optimality criteria. Dordrecht: KluwerGoogle Scholar
  18. Rozvany, G.I.N.; Olhoff, N.; Bendsøe, M.P.; Ong, T.G.; Szeto, W.T. 1987: Least-weight design of perforated elastic plates, I, II.Int. J. Solids Struct. 23, 537–550Google Scholar
  19. Suzuki, K.; Kikuchi, N. 1991: Shape and topology optimization for generalized layout problems using the homogenization method.Comp. Meth. Appl. Mech. Engrg. 93, 291–318Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. P. Bendsøe
    • 1
  • R. B. Haber
    • 2
  1. 1.Mathematical InstituteThe Technical University of DenmarkLyngbyDenmark
  2. 2.Department of Theoretical and Applied MechanicsUniversity of Illinois at Urbana—ChampaignUrbanaUSA

Personalised recommendations