Structural optimization

, Volume 4, Issue 3–4, pp 244–246 | Cite as

New optimality criteria methods: Forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections

  • G. I. N. Rozvany
  • J. Sobieszczanski-Sobieski
Brief Notes


In new, iterative continuum-based optimality criteria (COC) methods, the strain in the adjoint structure becomes non-unique if the number of active local constraints is greater than the number of design variables for an element. This brief note discusses the use of smooth envelope functions (SEF's) in overcoming economically computational problems caused by the above non-uniqueness.


Civil Engineer Design Variable Optimality Criterion Computational Problem Envelope Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berke, L.; Khot, N.S. 1987: Structural optimization using optimality criteria. In: Mota Soares, C.A. (ed.)Computer aided optimal design: structural and mechanical systems, pp. 271–312. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  2. Chang, K.J. 1992: Optimality criteria methods using K-S functions.Struct. Optim. 4, 213–217Google Scholar
  3. Rozvany, G.I.N.; Zhou, M.; Gollub, W.;et al. 1989/1990: Continuum-type optimality criteria methods for large finite element systems with a displacement constraint. Parts I, II.Struct. Optim. 1, 47–72,2, 77–104Google Scholar
  4. Rozvany, G.I.N.; Zhou, M. 1991a: The COC algorithm, Part I: cross-section optimization or sizing.Comp. Meth. Appl. Mech. Eng. 89, 281–308Google Scholar
  5. Rozvany, G.I.N.; Zhou, M. 1991b: A note on truss design for stress and displacment constraints by optimality criteria methods.Struct. Optim. 3, 45–50Google Scholar
  6. Sobieszczanski-Sobieski, J. 1992: A technique for locating function roots and for satisfying equality constraints in optimization.Struct. Optim. 4, 241–243.Google Scholar
  7. Zhou, M.; Rozvany, G.I.N. 1992: A new discretized optimality criteria method in structural optimization.Proc. AIAA/ASME/ASCE/AHS/ASC Structures, Dynamics and Materials Conf. (held in Dallas), pp. 3106–3120. Washington DC: AIAAGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. I. N. Rozvany
    • 1
  • J. Sobieszczanski-Sobieski
    • 2
  1. 1.FB 10, Universität EssenEssen 1Germany
  2. 2.NASA Langley Research CenterHamptonUSA

Personalised recommendations