Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optimal design of rigid-plastic annular plates with piecewise constant thickness

  • 43 Accesses

  • 1 Citations


Rigid-plastic stepped annular plates under uniform pressure load are considered. Both plate edges are supported. Four types of boundary conditions are studied. Tresca's yield condition is used. Such plate dimensions are sought for which the plate of constant volume has the maximal load carrying capacity.

This is a preview of subscription content, log in to check access.


a, d, R, h 1, h2 :

plate dimensions (Fig. 1)

Q * :

shear force

Q :

dimensionless shear force

M r * :

radial bending moment

M 1 :

dimensionless radial bending moment

M t * :

circumferential bending moment

M 2 :

dimensionless circumferential bending moment

M k :

maximum value of bending moments in the rigid region

p * :

uniform pressure load

p :

dimensionless uniform pressure load

r :

radial coordinate

x :

dimensionless radial coordinate

α, ϒ, ϑ :

dimensionless parameters for plate (5)

V :

plate volume


dimensionless plate volume

M 0 * :

yield moment

σ 0 :

yield stress

p 0 :

load carrying capacity

p 0 m :

maximum value of the load carrying capacity

p 0 u :

load carrying capacity for uniform plate

α m, ϒm :

optimal parameters, which correspond to the maximum value ofp 0

s i :

radius of circle between different plastic stages




  1. Drucker, D.C.; Shield, R.T., 1957: Bounds of minimum weight design.Quart. Appl. Math. 15, 3 269–281

  2. Lamblin, D.O.; Guerlement, G.; Save, M.A., 1985: Solution de dimensionnement plastique de volume minimal de plaque circulaires pleines et sandwiches en presence de contraites technologiques.J. Mec. Theor. Appl. 4, 433–461

  3. Lepik, Ü. 1963: Load carrying capacity of nonhomogeneous plates and shells.Izv. Akad. Nauk SSSR, OTN, Mekhanika i Mashinostrojenie. 4, 167–171 (in Russian)

  4. König, J.A.; Rychlevski, J., 1966: Limit analysis of circular plates with jump homogeneity.Int. J. Solids Struct. 2, 493–513

  5. Mróz, Z.; Sawczuk, A., 1960: Load carrying capacity of annular plates, which are supported on both edges.Izv. Akad. Nauk SSSR, OTN, Mekhanika i Mashinostrojenie. 3, 72–78 (in Russian)

  6. Rozvany, G.I.N. 1976:Optimal design of flexural systems: beams, grillages, slabs, plates and shells. Pergamon Press.

  7. Save, M.; Massonet, C., 1972:Plastic analysis and design of plates, shells and disks. Amsterdam: North Holland

  8. Save, M. 1985: Limit analysis of plates and shells: research over two decades.J. Struct. Mech. 13, 343–370

  9. Vallner, H. 1960: On the load carrying capacity of annular plates.Proc. Estonian Agricultural Academy. 17, 162–175 (in Estonian)

  10. Vallner, H. 1961: Calculation of the load carrying capacity of rigidplastic annular plates.Inform. Bulletin. VINITI Akad. Nauk SSSR. 2, 89–98 (in Russian)

Download references

Author information

Additional information

Communicated by Ü Lepik

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salupere, A. Optimal design of rigid-plastic annular plates with piecewise constant thickness. Structural Optimization 4, 186–192 (1992). https://doi.org/10.1007/BF01742743

Download citation


  • Boundary Condition
  • Civil Engineer
  • Optimal Design
  • Maximal Load
  • Constant Volume