Advertisement

Structural optimization

, Volume 9, Issue 1, pp 46–51 | Cite as

Mesh refinement for shape optimization

  • N. V. Banichuk
  • F. J. Barthold
  • A. Falk
  • E. Stein
Technical Papers

Abstract

The numerical solution of shape optimization problems is considered. The algorithm of successive optimization based on finite element techniques and design sensitivity analysis is applied. Mesh refinement is used to improve the quality of finite element analysis and the computed numerical solution. The norm of the variation of the Lagrange augmented functional with respect to boundary variation (residuals in necessary optimality conditions) is taken as an a posteriori error estimator for optimality conditions and the Zienkiewicz—Zhu error estimator is used to improve the quality of structural analysis. The examples presented show meaningful effects obtained by means of mesh refinement with a new error estimator.

Keywords

Sensitivity Analysis Optimality Condition Civil Engineer Structural Analysis Finite Element Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuška, I.; Miller, A. 1987: A feedback finite element method with a posteriori error estimation. Part I: The finite element method and some basic properties of the a posteriori error estimator.Comp. Meth. Appl. Mech. Engng. 61, 1–40Google Scholar
  2. Babuška, I.; Rheinboldt, W. 1978: Error estimates for adaptive finite element computations.SIAM J. Num. Anal. 15, 736–756Google Scholar
  3. Banichuk, N.V. 1990:Introduction to optimization of structures. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  4. Barthold, F.-J. 1993: Theorie und Numerik zur Berechnung und Optimierung von Strukturen aus isotropen, hyperelastischen Materialien.Technical Report F 93/2, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität HannoverGoogle Scholar
  5. Barthold, F.-J.; Becker, A.; Falk, A.; Rust, W. 1993: Zum Einfluß der Netzadaption bei der Formoptimierung.ZAMM 73, T680-T684Google Scholar
  6. Becker, A. 1992: Strukturoptimierung stabilitätsgefährdeter Systeme mittels analytischer Gradientenermittlung.Technical Report F 92/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität HannoverGoogle Scholar
  7. Falk, A. 1994: Adaptive Verfahren für die Formoptimierung flächiger Strukturen unter Berücksichtigung der CAD—FE—Kopplung.Technical Report F 94/2, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover (to appear)Google Scholar
  8. Georges, M.K.; Shephard, M.S. 1991: Automated adaptive two dimensional system for the HP—version of the finite element method32, 867–893Google Scholar
  9. Haug, E.J.; Arora, J.S. 1979:Applied optimal design. New York: WileyGoogle Scholar
  10. Johnson, C.; Hansbo, P. 1992: Adaptive finite element methods in computational mechanics.Comp. Meth. Appl. Mech. Engng. 101, 143–181Google Scholar
  11. Plank, L.; Stein, E.; Bischoff, D. 1990: Accuracy and adaptivity in the numerical analysis of thin walled structures.Comp. Meth. Appl. Mech. Engng. 82, 223–256Google Scholar
  12. Rank, E.; Babuška, I. 1987: An expert system for the optimal mesh design in the HP—version of the finite element method.Int. J. Num. Meth. Engng. 24, 2087–2106Google Scholar
  13. Redanz, W.; Wunderlich, W. 1992: A local strategy for mesh refinement and adaptive control. In: Zienkiewicz, O.C.; Ladeveze, P. (eds.)New advances in computational mechanics, pp. 233–245. Amsterdam: ElsevierGoogle Scholar
  14. Rust, W.; Stein, E. 1992: 2D—finite—element adaptations in structural mechanics, including shell analysis and non-linear calculations. In: Zienkiewicz, O.C.; Ladeveze, P. (eds.)New advances in computational mechanics, pp. 219–232. Amsterdam: ElsevierGoogle Scholar
  15. Stein, E.; Rust, W.; Ohnimus, S. 1992: H— and d—adaptive finite element methods for two-dimensional structural problems including post—buckling of shells.Comp. Meth. Appl. Mech. Engng. 101, 315–354Google Scholar
  16. Zienkiewicz, O.C.; Zhu, J.Z. 1987: A simple error estimator and adaptive procedure for practical engineering analysis.Int. J. Num. Meth. Engng. 24, 337–357Google Scholar
  17. Zienkiewicz, O.C.; Zhu, J.Z. 1991: Adaptivity and mesh generation.Int. J. Num. Meth. Engng. 32, 783–810Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • N. V. Banichuk
    • 1
  • F. J. Barthold
    • 2
  • A. Falk
    • 2
  • E. Stein
    • 2
  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Structural Mechanics and Computational MechanicsUniversity of HannoverHannoverGermany

Personalised recommendations