Klinische Wochenschrift

, Volume 67, Issue 6, pp 349–356 | Cite as

Die Insuffizienz der intraabdominellen Infektabwehr bei der eitrigen Peritonitis — Folge einer gestörten Fremdkörperopsonierung

  • A. Billing
  • D. Fröhlich
  • H. Kortmann
  • M. Jochum
Originalien

Abkürzungsverzeichnis

CL

Chemilumineszenz

IgG

Immunglobulin G

OK

Opsonierungskapazität

Deficient intraabdominal phagocytosis in peritonitis patients secondary to impaired opsonization

Summary

Despite a high concentration of serum proteins and intact phagocytes peritonitis exudates contain a large number of viable, pathogenic bacteria. The reason for this biological paradox is unknown. Our investigations reveal a pronounced defect in humoral opsonization of foreign particles in peritonitis exudate. We evaluated a modified chemiluminescence system allowing the determination of opsonic activity in serum and exudate. In serum we found a close correlation between opsonic activity and immunologically measurable levels of C3-complement and IgG. In purulent peritonitis exudates, however, the actual opsonizing activity was much less than expected according to the opsonin concentrations. We found a pronounced difference between immunologically determined opsonin levels and impaired opsonic function. Employing crossed immunoelectrophoresis massive C3-splitting into smaller fragments could be demonstrated in peritonitis exudates. In these exudates we found very high concentrations of granulocyte proteolytic (elastase) and oxidative (myeloperoxidase) enzymes which may lead to a functional destruction of opsonins followed by impaired opsonization in peritonitis exudate. The great number of bacteria and foreign particles in addition can cause a pronounced physiological consumption of complement components. The almost complete breakdown of intact C3-complement in intraabdominal exudate explains the deficient host defence in patients with severe peritonitis.

Key words

Peritonitis Opsonization Complement C3 IgG Granulocytic proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Allen RC (1977) Evaluation of serum opsonic capacity by quantitating the initial chemiluminescent response from phagocyting polymorphnuclear leukocytes. Inf and Imm 15:828–833Google Scholar
  2. 2.
    Allen RC, Lieberman M (1984) Kinetic analysis of microbe opsonification based on stimulated polymorphnuclear leukocyte oxygenation activity. Inf and Imm 45:475–482Google Scholar
  3. 3.
    Bellavite P, Dri P, Della Bianca V, Serra MC (1983) The measurement of superoxide anion production by immunglobulin G and complement component C3b. Europ J Clin Invest 13:363–368Google Scholar
  4. 4.
    Billing A, Kortmann H (1986) Nachweis zellulärer und humoraler Abwehrdefekte bei der eitrigen Peritonitis mit einem modifizierten Chemilumineszenzverfahren. Acta chir Austriacae 3:340–341Google Scholar
  5. 5.
    Coble BI, Dahlgren C, Hed J, Stendahl O (1984) Myeloperoxidase reduces the opsonizing activity of immunoglobulin G and complement component C3b. Biochem et Biophys Acta 802:501–505Google Scholar
  6. 6.
    van Dijk WC, Verbrugh HA, van Rijswijk R, Vos A, Verhoef J (1982) Neutrophil function, serum opsonic activity, and delayed hypersenstivity in surgical patientes. Surgery 92, 1:21–29Google Scholar
  7. 7.
    Duswald KH, Ring J, Bachmann Th, Stephan W, Brendel W (1976) Verhalten von IgG, IgA und IgM bei aseptischen und septischen postoperativen Verläufen. Lang Arch Chir Suppl Chir Forum 76:68Google Scholar
  8. 8.
    Duswald KH, Jochum M, Fritz H, Schweiberer L (1983) Diminished in vitro release of granulocyte elastase in septicemia after major surgery. Chir Forum:217–221Google Scholar
  9. 9.
    Dwenger A, Schweitzer G (1986) Bronchoalveolar lavage fluid and plasma proteins, chemiluminescence response and protein contents of polymorphnuclear leukocytes from blood and lavage fluid in traumatized patients. J Clin Chem Clin Biochem 24:73–88Google Scholar
  10. 10.
    Eckert P, Naber M, Barbey-Schneider M (1981) Immunglobuline im Serum und im Peritonealsekret in der frühen postoperativen Phase. Chirurg 52:403–408Google Scholar
  11. 11.
    Freischlag J, Backstrom B, Kelly D, Keehn G, Busuttil BAR (1986) Comparison of blood and peritoneal neutrophil activity in rabbits with and without peritonitis. J of Surg Res 40:145–151Google Scholar
  12. 12.
    Ganroth PO (1972) Crossed immunoelectrophoresis. Scand J Clin Lab Invest 29:39–41Google Scholar
  13. 13.
    Grabner W, Bergner D, Wermuth G (1970) Mikrozonenelektrophorese auf Membranfolien. Ärztl Lab 16:193Google Scholar
  14. 14.
    Hahn H (1984) Mechanismen der körpereigenen Infektabwehr. FAC 3:139–150Google Scholar
  15. 15.
    Inthorn D, Szceponik Th, Mühlbayer D, Jochum M, Redl H (1987) Studies of granulocyte function (chemiluminescence response) in postoperative infection. In: Schlag G, Redl H (eds) First Vienna Schock Forum. Part B Progr in Clin and Biol Res 263B:51–58Google Scholar
  16. 16.
    Marino JA, Spragnuolo PJ (1988) Fibronectin and phagocytic clearance mechanisms. J Lab Clin Med 112:493–494Google Scholar
  17. 17.
    Neumann S, Gunzer G, Hennrich N, Lang H (1984) PMN-elastase assay: Enzyme immunoassay for human polymorphnuclear elastase complexed with α1-proteinase inhibitor. J Clin Chem Clin Biochem 22:693–697Google Scholar
  18. 18.
    Neumann S, Gunzer G, Lang H, Jochum M, Fritz H (1986) Quantitation of myeloperoxidase from human granulocytes as an inflammation marker by enzyme-linked immunosorbent assay. Fresenius Z Anal Chem 324:365Google Scholar
  19. 19.
    Ohlsson K, Olsson I (1977) The extracellular release of granulocyte collagenase and elastase during phagocytosis and inflammatory processes. Scand J Haematol 19:145–152Google Scholar
  20. 20.
    Ossana PJ, Test ST, Matheson NR, Regiani S, Weiss SJ (1986) Oxidative regulation of neutrophil elastase-alpha-1-proteinase inhibitor interactions. J Clin Invest 77:1939–1951Google Scholar
  21. 21.
    Stübner G (1983) Immunologische Aspekte intraperitonealer Infektionen. FAC, Band 2–3:437–445Google Scholar
  22. 22.
    Teichmann H, Wittmann D, Andreone P (1986) Scheduled reoperations (Etappenlavage) for diffuse peritonitis. Arch Surg 121:147–152Google Scholar
  23. 23.
    Waldvogel FA, Vaudaux P, Lew PD, Zwahlen A, Suter S, Nydegger U (1984) Deficient phagocytosis secondary to breakdown of opsonic factors in infected exudates. Adv Exp Med and Biol 141:603–610Google Scholar
  24. 24.
    Weichselbaum TE (1946) An accurate and rapid method for determination of proteins in small amounts of blood serum and plasma. Am J Clin Path 16:40Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Billing
    • 1
  • D. Fröhlich
    • 1
  • H. Kortmann
    • 1
  • M. Jochum
    • 2
  1. 1.Chirurgische Klinik und Poliklinik der Ludwig-Maximilians-Universität München, Klinikum GroßhadernGermany
  2. 2.Abteilung für Klinische Chemie und Klinische Biochemie in der Chirurgischen Klinik Innenstadt der Ludwig-Maximilians-Universität MünchenGermany

Personalised recommendations