Journal of Muscle Research & Cell Motility

, Volume 10, Issue 3, pp 197–205 | Cite as

Three myosin heavy chain isoforms in type 2 skeletal muscle fibres

  • Stefano Schiaffino
  • Luisa Gorza
  • Saverio Sartore
  • Leopoldo Saggin
  • Simonetta Ausoni
  • Monica Vianello
  • Kristian Gundersen
  • Terje LØmo


Mammalian skeletal muscles consist of three main fibre types, type 1, 2A and 2B fibres, with different myosin heavy chain (MHC) composition. We have now identified another fibre type, called type 2X fibre, characterized by a specific MHC isoform. Type 2X fibres, which are widely distributed in rat skeletal muscles, can be distinguished from 2A and 2B fibres by histochemical ATPase activity and by their unique staining pattern with seven anti-MHC monoclonal antibodies. The existence of the 2X-MHC isoform was confirmed by immunoblotting analysis using muscles containing 2X fibres as a major component, such as the normal and hyperthyroid diaphragm, and the soleus muscle after high frequency chronic stimulation. 2X-MHC contains one determinant common to 2B-MHC and another common to all type 2-MHCs, but lacks epitopes specific for 2A- and 2B-MHCs, as well as an epitope present on all other MHCs. By SDS-polyacrylamide gel electrophoresis 2X-MHC shows a lower mobility compared to 2B-MHC and appears to comigrate with 2A-MHC. Muscles containing predominantly 2X-MHC display a velocity of shortening intermediate between that of slow muscles and that of fast muscles composed predominantly of 2B fibres.


Skeletal Muscle ATPase Activity Fibre Type Myosin Heavy Chain Soleus Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BÄr, A. &Pette, D. (1988) Three fast myosin heavy chains in adult rat skeletal muscle.FEBS Lett. 235, 153–5.Google Scholar
  2. Barany, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening.J. gen. Physiol. 50, 197–216.Google Scholar
  3. Billeter, R., Heizmann, C. W., Howard, H. &Jenny, E. (1981) Analysis of myosin light and heavy chain types in single human skeletal muscle fibres.Eur. J. Biochem. 116, 389–95.Google Scholar
  4. Brooke, M. H. &Kaiser, K. K. (1970) Muscle fiber types: how many and what kind?Arch. Neurol. 23, 369–79.Google Scholar
  5. Burke, R. E., Levine, D. N., Tsairis, P. &Zajac, F. E. (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius.J. Physiol. (Lond.) 234, 723–48.Google Scholar
  6. Dalla Libera, L., Sartore, S., Pierobon-Bormioli, S. &Schiaffino, S. (1980) Fast-white and fast-red isomyosins in guinea pig muscles.Biochem. Biophys. Res. Commun. 96, 1662–70.Google Scholar
  7. Danielibetto, D., Zerbato, E. &Betto, R. (1986) Type 1, 2A and 2B myosin heavy chain electrophoretic analysis of rat muscle fibers.Biochem. Biophys. Res. Commun. 138, 981–7.Google Scholar
  8. Dhoot, G. K., Hales, M. C., Grail, B. M. &Perry, S. V. (1985) The isoforms of C protein and their distribution in mammalian skeletal muscle.J. Musc. Res. Cell Motility 6, 487–505.Google Scholar
  9. Eddinger, T. J. &Moss, R. L. (1987) Mechanical properties of skinned single fibers of identified types from rat diaphragm.Am. J. Physiol. 253, C210–8.Google Scholar
  10. Edstrom, L. &Kugelberg, E. (1968) Histochemical composition, distribution of fibres and fatiguability of single motor units.J. Neurol. Neurosurg. Psychiat. 31, 424–33.Google Scholar
  11. Gorza, L., Sartore, S., Thornell, L. E. &Schiaffino, S. (1986) Myosin types and fiber types in cardiac muscle. III. Nodal conduction tissue.J. cell. Biol. 102, 1758–66.Google Scholar
  12. Gorza, L., Gundersen, K., LØmo, T., &Schiaffino, S. (1988) Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat.J. Physiol. (Lond.) 402, 627–49.Google Scholar
  13. Guth, L. &Samaha, F. J. (1969) Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle.Exp. Neurol. 25, 138–52.Google Scholar
  14. Hintz, C., Coyle, E. F., Kaiser, K. K., Chi, M. M. Y. &Lowry, O. H. (1984) Comparison of muscle fiber typing by quantitative enzyme assays and by myosin ATPase staining.J. Histochem. Cytochem. 32, 655–60.Google Scholar
  15. Hoh, J. F. Y., McGrath, P. A. &Hale, P. T. (1978) Electrophoretic analysis of multiple forms of rat cardiac myosin: Effect of hypophysectomy and thyroxine replacementJ. molec. cell. Cardiol. 10, 1053–76.Google Scholar
  16. Hudson, L. &Hay, F. C. (1980)Practical Immunology, 2nd edn pp. 220–222. Oxford: Blackwell Scientific.Google Scholar
  17. Izumo, S., Nadal-Ginard, B. &Mahdavi, V. (1986) All members of the myosin heavy chain multi-gene family respond to thyroid hormone in a highly tissue specific manner.Science 231, 597–600.Google Scholar
  18. Julian, F. J., Moss, R. L., &Waller, G. S. (1981) Mechanical properties and myosin light chain composition of skinned muscle fibres from adult and newborn rats.J. Physiol. (Lond.) 311, 201–18.Google Scholar
  19. Kugelberg, E. &Lindegren, B. (1979) Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres.J. Physiol. (Lond.) 288, 285–300.Google Scholar
  20. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227, 680–5.Google Scholar
  21. Lannergren, J. (1987) Contractile properties and myosin isoenzymes of various kinds ofXenopus twitch muscle fibres.J. Musc. Res. Cell Motility 8, 260–73.Google Scholar
  22. Leung, B., Kula, R. W. &Shafiq, S. A. (1987) Fiber types in normal and neonatally denervated fast muscles of the rat: immunocytochemical study with an antimyosin monoclonal antibody.Exp. Neurol. 97, 429–40.Google Scholar
  23. Luff, A. R. (1981) Dynamic properties of the inferior recrus, extensor digitorum longus, diaphragm and soleus muscles of the mouse.J. Physiol. (Lond.) 313, 161–71.Google Scholar
  24. Mabuchi, K., Mabuchi, Y., Sreter, F. A. &Gergely, J. (1988) Subdivision of leg type 2B fibres in rabbit and rat skeletal muscles.Biophys. J. 53, 179a.Google Scholar
  25. Margossian, S. S. &Lowey, S. (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle.Meth. Enzymol. 85, 55–71.Google Scholar
  26. Moore, G. E. &Schachat, F. H. (1985) Molecular heterogeneity of histochemical fibre types: a comparison of fast fibres.J. Musc. Res. Cell Motility 6, 513–24.Google Scholar
  27. Morrissey, J. H. (1981) Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity.Analyt. Biochem. 117, 307–10.Google Scholar
  28. Nachlas, M. M., Tsou, K. G., De Sousa, E., Cheng, C. S. &Seligman, A. M. (1957) Cytochemical demonstration of succinic dehydrogenase by the use of a newp-nitrophenyl substituted ditetrazolium.J. Histochem. Cytochem. 5, 420–36.Google Scholar
  29. Nemeth, P. &Pette, D. (1981) Succinate dehydrogenase activity in fibres classified by myosin ATPase in three hind limb muscles of rat.J. Physiol. (Lond.) 320, 73–80.Google Scholar
  30. Pagani, E. D. &Julian, F. J. (1984) Rabbit papillary muscle myosin isozymes and the velocity of muscle shortening.Circ. Res. 54, 586–94.Google Scholar
  31. Pierobon-Bormioli, S., Sartore, S., Dalla Libera, L., Vitadello, M. &Schiaffino, S. (1981) Fast isomyosins and fiber types in mammalian skeletal muscle.J. Histochem. Cytochem. 29, 1179–88.Google Scholar
  32. Reiser, P. J., Moss, R. L., Giulian, G. G. &Greaser, M. L. (1985) Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition.J. biol. Chem. 260, 9077–80.Google Scholar
  33. Russo, C., Callegaro, L., Lanza, L. &Ferrone, S. (1983) Purification of IgG monoclonal antibodies by caprylic acid technique.J. Immun. Meth. 65, 269–71.Google Scholar
  34. Sartore, S., Gorza, L. &Schiaffino, S. (1982) Fetal myosin heavy chain in regenerating muscle.Nature 298, 294–6.Google Scholar
  35. Sartore, S., Mascarello, F., Rowlerson, A., Gorza, L., Ausoni, S., Vianello, M. &Schiaffino, S. (1987) Fibre types in extraocular muscles: A new myosin isoform in the fast fibres.J. Musc. Res. Cell Motility 8, 161–71.Google Scholar
  36. Schachat, F. H., Bronson, D. D. &McDonald, O. B. (1985a) Heterogeneity of contractile proteins. A continuum of troponin-tropomyosin expression in mammalian skeletal muscle.J. biol. Chem. 260, 1108–13.Google Scholar
  37. Schachat, F. H., Canine, A. C., Briggs, M. M. &Reedy, M. C. (1985b) The presence of two skeletal muscle α-actinins correlates with troponin-tropomyosin expression and Z-line width.J. cell Biol. 101, 1001–8.Google Scholar
  38. Schiaffino, S., Ausoni, S., Gorza, L., Saggin, L., Gundersen, K., &LØmo, T. (1988a) Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres.Acta Physiol. Scand. 134, 565–6.Google Scholar
  39. Schiaffino, S., Gorza, L., Pitton, G., Saggin, L., Ausoni, S., Sartore, S. &LØmo, T. (1988b) Embryonic and neonatal myosin heavy chain in denervated and paralysed rat skeletal muscle.Devl. Biol. 127, 1–11.Google Scholar
  40. Schiaffino, S., Gorza, L., Sartore, S., Saggin, L. &Carli, M. (1986a) Embryonic myosin heavy chain as a differentiation marker of human developing muscle and rhabdomyosarcoma. A monoclonal antibody study.Exp. Cell Res. 163, 211–20.Google Scholar
  41. Schiaffino, S., Hanzlikova, V. &Pierobon, S. (1970) Relation between structure and function in rat skeletal muscle fibres.J. cell Biol. 47, 107–19.Google Scholar
  42. Schiaffino, S., Saggin, L., Viel, A., Ausoni, S., Sartore, S. &Gorza, L. (1986b) Muscle fibre types identified by monoclonal antibodies to myosin heavy chains. InBiochemical Aspects of Physical Exercise (edited byBenzi, G., Packer, L. &Siliprandi, N.), pp. 27–34, Amsterdam: Elsevier.Google Scholar
  43. Schiaffino, S., Saggin, L., Viel, A., &Gorza, L. (1985) Differentiation of fibre types in rat skeletal muscle visualized with monoclonal antimyosin antibodies.J. Musc. Res. Cell Motility 6, 60–1.Google Scholar
  44. Schwartz, K., Lecarpentier, Y., Martin, J. L., Lompré, A. M., Mercadier, J. J. &Swynghedauw, B. (1981) Myosin isoenzymic distribution correlates with speed of myocardial contraction.J. molec. cell. Cardiol. 13, 1071–5.Google Scholar
  45. Starr, R., Almond, R. &Offer, G. (1985) Location of C-protein, H-protein and X-protein in rabbit skeletal muscle fibre types.J. Musc. Res. Cell Motility 6, 227–56.Google Scholar
  46. Sweeney, H. L., Kushmerick, M. J., Mabuchi, K., Gergely, J. &Sreter, F. A. (1986) Velocity of shortening and myosin isozymes in two types of rabbit fast-twitch muscle fibres.Am. J. Physiol. 251, C431–4.Google Scholar
  47. Sweeney, H. L., Kushmerick, M. J., Mabuchi, K., Sreter, F. A. &Gergely, J. (1988) Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibres.J. biol. Chem. 263, 9034–9.Google Scholar
  48. Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. natn. Acad. Sci. U.S.A. 76, 4350–4.Google Scholar
  49. Trojanowski, J. Q., Obrocka, M. A. &Lee, V. M. Y. (1983) A comparison of eight different chromogen protocols for the demonstration of immunoreactive neurofilaments in rat cerebellum using the peroxidase-antiperoxidase method and monoclonal antibodies.J. Histochem. Cytochem. 31, 1217–23.Google Scholar
  50. Wagner, P. D. (1981) Formation and characterization of myosin hybrids containing essential light chains and heavy chains from different muscle myosins.J. biol. Chem. 256, 2493–8.Google Scholar
  51. Wieczorek, D. F., Periasamy, M., Butler-Browne, G. S., Whalen, R. G. &Nadal-Ginard, B. (1985) Co-expression of multiple myosin heavy chain genes, in addition to a tissue-specific one,in extraocular musculature.J. cell. Biol. 101, 618–29.Google Scholar
  52. Zweig, S. E. (1981) The muscle specificity and structure of two closely related fast-twitch white muscle myosin heavy chain isozymes.J. biol. Chem. 256, 11847–53.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • Stefano Schiaffino
    • 1
    • 2
  • Luisa Gorza
    • 1
    • 2
  • Saverio Sartore
    • 1
  • Leopoldo Saggin
    • 1
    • 2
  • Simonetta Ausoni
    • 1
    • 2
  • Monica Vianello
    • 1
  • Kristian Gundersen
    • 3
  • Terje LØmo
    • 3
  1. 1.Institute of General PathologyUniversity of PadovaPadovaItaly
  2. 2.CNR Unit for Muscle Biology and PhysiopathologyUniversity of PadovaPadovaItaly
  3. 3.Institute of NeurophysiologyUniversity of OsloOslo 1Norway

Personalised recommendations