Intensive Care Medicine

, Volume 19, Supplement 1, pp S8–S15 | Cite as

Coagulation disorders in septic shock

  • L. G. Thijs
  • J. P. de Boer
  • M. C. M. de Groot
  • C. E. Hack


Abnormalities in coagulation and fibrinolysis are frequently observed in septic shock. The most pronounced clinical manifestation is disseminated intravascular coagulation. Recent studies in human volunteers and animal models have clarified the early dynamics and route of activation of both coagulation and fibrinolytic pathways. In healthy subjects subjected to a low dose of either endotoxin or TNF an imbalance in the procoagulant and the fibrinolytic mechanisms is apparent, resulting in a procoagulant state. Also in patients with septic shock a dynamic process of coagulation and fibrinolysis is ongoing with evidence of impaired fibrinolysis. These abnormalities have prognostic significance; the extent of disturbances of coagulation and fibrinolysis is related to the development of multiple organ failure and death.

Key words

Sepsis Coagulation Fibrinolysis Septic shock 


  1. 1.
    Fourrier F, Chopin C, Goudemand J, Hendrycx S, Caron C, Rime A, Marey A, Lestavel P (1992) Septic shock, multiple organ failure, and disseminated intravascular coagulation. Chest 101:816–823Google Scholar
  2. 2.
    Leclerc F, Hazelzet J, Jude B, Hofhuis W, Hue V, Marinot A, Van der Voort E (1992) Protein C and S deficiency in severe infectious purpura of children: a collaborative study of 40 cases. Intensive Care Med 18:202–205Google Scholar
  3. 3.
    Coalson JJ (1986) Pathology of sepsis, septic shock and multiple organ failure. In: Sibbald WJ, Sprung CL (eds) Perspectives on sepsis and septic shock. New Horizons SCCM: p 27–59Google Scholar
  4. 4.
    Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV (1986) Multiple-organ-failure syndrome. Arch Surg 121:196–208Google Scholar
  5. 5.
    Tanaka T, Tsujinaka T, Kambayashi J, Higashiyama M, Yokota M, Sakon M, Mori T (1990) The effect of heparin on multiple organ failure and disseminated intravascular coagulation in a sepsis model. Thromb Res 60:321–330Google Scholar
  6. 6.
    Colman RW (1992) The role of the kallikrein-kinin system in septic shock. In: Lamy M, Thijs LG (eds) Mediators of sepsis. Update in intensive care and emergency medicine, vol 16. Springer, Berlin Heidelberg New York, p 99–112Google Scholar
  7. 7.
    Taylor FB jr (in press) Studies on the natural history and mechanism of the primate (baboon) response toE. coli. In: Morrison DC, Ryan JL (eds) Bacterial endotoxic lipopolysaccharides, vol II. CRC Press, Boca Raton, FloridaGoogle Scholar
  8. 8.
    Furie B, Furie BC (1992) Molecular and cellular biology of blood coagulation. N Engl J Med 326:800–806Google Scholar
  9. 9.
    Harris KW, Esmon CT (1985) Protein S is required for bovine platelets to support activated protein C binding and activity. J Biol Chem 260:2007–2011Google Scholar
  10. 10.
    Kruithof EKO, Nocoloso G, Bachmann F (1987) Plasminogen activator inhibitor 1: development of a radioimmunoassay and observations on its plasma concentration during venous occlusion and after platelet aggregation. Blood 70:1645–1653Google Scholar
  11. 11.
    Moore KL, Andreoli SP, Esmon NL, Esmon CT, Bang NU (1987) Endotoxin enhances tissue factor and suppresses thrombomodulin expression of human vascular endothelium in vitro. J Clin Invest 79:124–130Google Scholar
  12. 12.
    Colucci M, Balconi G, Lorenzet R, Pietra A, Locati D, Donati MB, Semeraro N (1983) Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 71:1893–1896Google Scholar
  13. 13.
    Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, Gimbrone MA Jr (1984) Interleukin-1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelail cells. J Exp Med 160:618–623Google Scholar
  14. 14.
    Nawroth PP, Stern DM (1986) Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 163:740–745Google Scholar
  15. 15.
    Bevilacqua MP, Pober JS, Majeau GR, Fiers RW, Cotran RS, Gimbrone MA Jr (1986) Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin-1. Proc Natl Acad Sci USA 83:4533–4537Google Scholar
  16. 16.
    Conway EM, Back R, Rosenberg RD, Koningsberg WH (1989) Tumor necrosis factor enhances expression of tissue factor in RNA in endothelial cells. Thromb Res 53:231–241Google Scholar
  17. 17.
    Nawroth PP, Handley DA, Esmon CT, Stern DM (1986) Interleukin-1 induces endothelial cell procoagulant while suppressing cell surface anticoagulant activity. Proc Natl Acad Sci USA 83:3460–3464Google Scholar
  18. 18.
    Moore KL, Esmon CT, Esmon NL (1989) Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine anti endothelial cells in culture. Blood 73:159–165Google Scholar
  19. 19.
    Conway EM, Rosenberg RD (1988) Tumor necrosis factor suppresses transcription of thrombomodulin gene in endothelial cells. Mol Cell Biol 8:5588–5592Google Scholar
  20. 20.
    Emeis JJ, Kooistra T (1986) Interleukin-1 and lipopolysaccharide induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J Exp Med 163:1260–1266Google Scholar
  21. 21.
    Hanss M, Collen D (1987) Secretion of tissue-type plasminogen activator and plasminogen activator inhibitor by cultured human endothelial cells: modulation by thrombin, endotoxin, and histamine. J Lab Clin Med 109:97–104Google Scholar
  22. 22.
    Schleef RR, Bevilacqua MP, Sawdey M, Gimbrone MA Jr, Loskutoff DJ (1988) Cytokine activation of vascular endothelium: effects on tissue-type plasminogen activator and type I plasminogen activator inhibitor. J Biol Chem 263:5797–5803Google Scholar
  23. 23.
    Van Hinsbergh VWM, Van den Berg EA, Fiers W, Dooijewaard G (1990) Tumor necrosis factor induces the production of urokinasetype plasminogen activator by human endothelial cells. Blood 75:1991–1996Google Scholar
  24. 24.
    Colluci M, Paramo JA, Collen D (1985) Generation in plasma of a fast acting inhibitor of plasminogen activator in response to endotoxin stimulation. J Clin Invest 75:818–824Google Scholar
  25. 25.
    Gelehrter TD, Sznycer-Laszuk R (1986) Thrombin induction of plasminogen activator-inhibitor in cultured human endothelial cells. J Clin Invest 77:165–169Google Scholar
  26. 26.
    Hoylaerts M, Rijken DC, Lijnen HR, Collen D (1982) Kinetics of the activation of plasminogen activator: role of fibrin. J Biol Chem 257:2912–2919Google Scholar
  27. 27.
    Wojta J, Hoover RL, Daniel TO (1989) Vascular origin determines plasminogen activator expression in human endothelial cells. Renal endothelial cells produced large amounts of single chain urokinase type plasminogen activator. J Biol Chem 264:2846–2852Google Scholar
  28. 28.
    Heaton JH, Dame MK, Gelehrter TD (1992) Thrombin induction of plasminogen activator inhibitor mRNA in human umbilical vein endothelial cells in culture. J Lab Clin Med 120:222–228Google Scholar
  29. 29.
    Shumann MA (1986) Thrombin-cellular interactions. Ann NY Acad Sci 485:228–239Google Scholar
  30. 30.
    Suffredini AF, Harpel PC, Parrillo JE (1989) Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. N Engl J Med 320:1165–1172Google Scholar
  31. 31.
    Van Deventer SJH, Büller HR, Ten Cate JW, Aarden LA, Hack CE, Sturk A (1990) Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76:2520–2526Google Scholar
  32. 32.
    Wolff SM (1973) Biological effects of bacterial endotoxins in man. J Infect Dis 128:259–264Google Scholar
  33. 33.
    Mastich GD, Danner RL, Ceska M, Suffredini AF (1991) Detection of interleukin-8 and tumor necrosis factor in normal humans following intravenous endotoxin: the effect of anti-inflammatory agents. J Exp Med 173:1021–1024Google Scholar
  34. 34.
    Hesse DG, Tracey KJ, Fong Y, Manogue KR, Palladino MA Jr, Shires GT, Lowry SF (1988) Cytokine appearance in human endotoxia and primate bacteremia. Surg Gynecol Obstet 166:147–153Google Scholar
  35. 35.
    De La Cadena RA, Suffredini AF, Kaufman N, Parrillo JE, Colman RW (1990) Activation of the kalikrein-kinin system after endotoxin administration to normal human volunteers. Clin Res 38:346AGoogle Scholar
  36. 36.
    Van der Poll T, Büller HR, Ten Cate H, Wortel CH, Bauer KA, Van Deventer SJH, Hack CE, Sauerwein HP, Rosenberg RD, Ten Cate JW (1990) Activation of coagulation after administration of tumor necrosis factor to normal subjects. N Engl J Med 322:1622–1627Google Scholar
  37. 37.
    Van der Poll T, Levi M, Büller HR, Van Deventer SJH, De Boer JP, Hack CE, Ten Cate JW (1991) Fibrinolytic response to tumor necrosis factor in healthy subjects. J Exp Med 174:729–732Google Scholar
  38. 38.
    Bauer KA, Ten Cate H, Barzeger S, Spriggs DR, Sherman ML, Rosenberg RD (1989) Tumor necrosis factor infusions have a procoagulant effect on the hemostatic mechanism of humans. Blood 74:165–172Google Scholar
  39. 39.
    Van Hinsbergh VWM, Bauer KA, Kooistra T, Kluft C, Dooijewaard G, Sherman ML, Nieuwenhuizen W (1990) Progress of fibrinolysis during tumor necrosis factor infusions in humans. Concomitant increase in tissue-type plasminogen activator, plasminogen activator inhibitor type-1, and fibrin(ogen) degradation products. Blood 76:2284–2289Google Scholar
  40. 40.
    Smith-Erichsen N, Aasen AO, Gallimore MJ, Amudsen E (1982) Studies of components of the coagulation systems in normal individuals and septic shock patients. Circ Shock 9:491–497Google Scholar
  41. 41.
    Voss R, Matthias FR, Borkowski G, Reitz D (1990) Activation and inhibition of fibrinolysis in septic patients in an internal intensive care unit. Br J Haematol 75:99–105Google Scholar
  42. 42.
    Hesselvik JF, Blombäck M, Brodin B, Maller R (1989) Coagulation, fibrinolysis, and kallikrein systems in sepsis: relation to outcome. Crit Care Med 17:724–733Google Scholar
  43. 43.
    Takahashi H, Tatewaki W, Wada K, Hanano M, Shibata A (1990) Thrombin vs. plasmin generation in disseminated intravascular coagulation associated with various underlying disorders. Am J Hematol 33:90–95Google Scholar
  44. 44.
    Hesselvik JF, Malm J, Dahlbäck B, Blombäck M (1991) Protein C, Protein S and C4b-binding protein in severe infection and septic shock. Thromb Haemost 65:126–129Google Scholar
  45. 45.
    Okajima K, Yang WP, Okabe H, Inoue M, Takatsuki K (1991) Role of leukocytes in the activation of intravascular coagulation in patients with septicemia. Am J hematol 36:265–271Google Scholar
  46. 46.
    De Boer JP, Creasy AA, Chang A, Roem D, Brouwer MC, Eerenberg AJM, Hack CE, Taylor FB Jr (1993) Activation patterns of coagulation and fibrinolysis in baboons following infusion with lethal and sublethal dose ofE. coli. Circ Shock 39:59–67Google Scholar
  47. 47.
    Creasy AA, Stevens P, Kenney J, Allison AC, Warren K, Catlett R, Hinshaw L, Taylor FB Jr (1991) Endotoxin and cytokine profile in plasma of baboons challenged with lethal and sublethalEscherichia coli. Circ Shock 33:84–91Google Scholar
  48. 48.
    Nuijens JH, Huijbregts CCM, Eerenberg AJM, Abbink JJ, Strack van Schijndel RJM, Felt-Bersma RJF, Thijs LG, Hack CE (1988) Quantification of plasma factor XIIa-C1 inhibitor and kallikrein-C1 inhibitor complexes in sepsis. Blood 72:487–493Google Scholar
  49. 49.
    Schorer AE, Rick PD, Swaim WR, Moldow CF (1985) Structural features of endotoxin required for stimulation of endothelial cell tissue factor production; exposure of preformed tissue factor after oxidant-mediated endothelial cell injury. J Lab Clin Med 106:38–42Google Scholar
  50. 50.
    Osterund B, Flægstad T (1983) Increased tissue thromboplastin activity in monocytes of patients with meningococcal infection: related to an unfavourable prognosis. Thromb Hemost 49:5–7Google Scholar
  51. 51.
    Taylor FB Jr, Chang A, Ruf W, Morrissey JH, Hinshaw L, Catlett R, Blick K, Edgington TS (1991) LethalE. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 33:127–134Google Scholar
  52. 52.
    Philipé J, Offner F, Declerck PJ, Leroux-Roels G, Vogelaers D, Baele G, Collen D (1991) Fibrinolysis and coagulation in patients with infectious disease and sepsis. Thromb Hemost 65:291–295Google Scholar
  53. 53.
    Brandtzaeg P, Sandset PM, Joo GB, Ovstebo R, Abildgaard U, Kierulf P (1989) The quantitative association of plasma endotoxin, antithrombin, protein C, extrinsic pathway inhibitor and fibrinopeptide A in systemic meningococcal disease. Thromb Res 55:459–470Google Scholar
  54. 54.
    Wilson RF, Mammen EF, Robson MC, Heggers JP, Soullier G, DePoli PA (1985) Antithrombin, prekallikrein, and fibronectin levels in surgical patients. Arch Surg 121:635–640Google Scholar
  55. 55.
    Seitz R, Wolf M, Egbring R, Radtke KP, Liesenfeld A, Pittmer P (1987) Participation and interaction of neutrophil elastase in haemostatic disorders of patients with severe infections. Eur J Haematol 38:231–240Google Scholar
  56. 56.
    Jordan RE, Nelson RM, Kilpatrick J, Newgren JO, Esmon PC, Fournel MA (1989) Antithrombin inactivation by neutrophil elastase requires heparin. Am J Med 87:3B19S-3B22SGoogle Scholar
  57. 57.
    Marlar RA, Endres-Brooks J, Miller C (1985) Serial studies of protein C and its plasma inhibitor in patients with disseminated intravascular coagulation. Blood 66:59–63Google Scholar
  58. 58.
    Fourrier F, Lestavel P, Chopin C, Marey A, Goudemand J, Rime A, Mangalaboyi J (1990) Meningococcemia and purpura fulminans in adults: acute deficiencies of proteins C and S and early treatment with antithrombin III concentrates. Intensive Care Med 16:121–124Google Scholar
  59. 59.
    Blanco A, Guisaola JA, Solis P, Bachiller R, Gonzalez H (1990) Fibronectin in meningococcal sepsis: correlation with antithrombin III and protein C. Acta Paediatr Scand 79:73–76Google Scholar
  60. 60.
    Taylor FB Jr, Emerson TE Jr, Jordan R, Chang AK, Blick KE (1988) Antithrombin-III prevents the lethal effects ofEscherichia coli infusion in baboons. Circ Shock 26:227–235Google Scholar
  61. 61.
    Taylor FB Jr, Chang A, Esmon Ct, D'Angelo A, Vigano-D'Angelo S, Blick KE (1987) Protein C prevents the coagulopathic and lethal effects ofEscherichia coli infusion in the baboons. J Clin Invest 79:918–925Google Scholar
  62. 62.
    Taylor FB Jr, Chang A, Ferrell G, Mather T, Catlett R, Blick K, Esmon CT (1991) C4b-binding protein exacerbates the host response toEscherichia coli. Blood 78:357–363Google Scholar
  63. 63.
    Taylor FB Jr, Chang ACK, Peer GT, Mather T, Blick K, Catlett R, Lockhart MS, Esmon CT (1991) DEGR-factor Xa blocks disseminated intravascular coagulation initiated byEscherichia coli without preventing shock or organ damage. Blood 78:364–368Google Scholar
  64. 64.
    Brandtzaeg P, Joo GB, Brusletto B, Kierulf P (1990) Plasminogen activator inhibitor 1 and 2, alpha-2-antiplasmin, plasminogen, and endotoxin levels in systemic meningococcal disease. Thromb Res 57:271–278Google Scholar
  65. 65.
    Pralong G, Calandra T, Glauser MP, Schellekens J, Verhoef J, Bachmann F, Kruithof EKO (1989) Plasminogen activator inhibitor 1: a new prognostic marker in septic shock. Thromb Haemost 61:459–462Google Scholar
  66. 66.
    Hekman CM, Loskutoff DJ (1989) Endothelial cells produce a latent inhibitor of plasminogen that can be associated by denaturants. J Biol Chem 260:11581–11587Google Scholar
  67. 67.
    Lindahl TL, Sigurdardoffir O, Wiman B (1989) Stability of plasminogen activator inhibitor 1 (PAI-1). Thromb Haemost 62:748–751Google Scholar
  68. 68.
    Kruithof EKO (1988) Plasminogen activator inhibitor type 1: biochemical, biological and clinical aspects. Fibrinolysis 2:59–70Google Scholar
  69. 69.
    Lawrence DA, Loskutoff DJ (1986) Inactivation of plasminogen activator inhibitor by oxidants. Biochemistry 25:6351–6355Google Scholar
  70. 70.
    Stief TW, Martin E, Caso F, Rodriquez JM (1990) Oxidation susceptibility of plasminogen activator inhibitors in human plasma. Thromb Res 60:177–180Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • L. G. Thijs
    • 1
  • J. P. de Boer
    • 2
  • M. C. M. de Groot
    • 1
  • C. E. Hack
    • 2
  1. 1.Medical Intensive Care UnitFree University HospitalAmsterdamThe Netherlands
  2. 2.Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, and Laboratory for Experimental and Clinical ImmunologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations