Journal of Molecular Evolution

, Volume 8, Issue 1, pp 13–40 | Cite as

The molecular evolution of cytochrome c in eukaryotes

  • Walter M. Fitch


Using many more cytochrome sequences than previously available, we have confirmed: 1, the eukaryotic cytochromes c diverged from a common ancestor; 2, the ancestral eukaryotic cytochrome c was not greatly different in character from those present today; 3, fixations are non-randomly distributed among the codons, there being evidence for at least four classes of variability; 4, there are similar classes of variability when the data are considered according to the nucleotide position within the codon; 5, the number of covarions (concomitantly variable codons) in mammalian cytochrome c genes is about 12 and the same value has been obtained for dicotyledonous plants as well; 6, all of the hyper- and most highly variable codons are for external residues, nearly 60 per cent of the invariable codons are for internal residues and nearly half of the codons for internal residues are invariable; 7, the first nucleotide position of a codon is more likely and the second position less likely to fix mutations than would be expected on the basis of the number of ways that alternative amino acids can be reached; 8, the character of nucleotide replacements is enormously non-random, with G
A interchanges representing 42% of those observed in the first nucleotide position, but the observation does not stem from a bias in the DNA strand receiving the mutation, nor from the presence of a compositional equilibrium, nor from a bias in the frequency with which different nucleotides mutate, but rather from a bias in the acceptability of an alternative nucleotide as circumscribed by the functional acceptability of the new amino acid encoded; and 9, the unit evolutionary period is approximately 150 million years/observable (amino acid changing) nucleotide replacement/cytochrome c covarion in two diverging lines.

Wherever non-randomness has been observed, it has always been consistent with the consideration that an alternative amino acid at any location is more likely to be acceptable the more closely it resembles the present amino acid in its physico-chemical properties.

Finally, in no case did the a priori assumption of a biologically realistic phylogeny lead to any observations or conclusions that were in any way significantly different from those obtained when the phylogeny was based solely upon the sequences, proving that the earlier results were not a consequence of some internal circularity.

Key words

Cytochrome c Evolution Codon Variability Nucleotide Variability Evolutionary Rate Non-Randomness of Replacing Nucleotide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augusteyn, R.C. (1973). Biochim.Biophys.Acta 303, 1–7Google Scholar
  2. Augusteyn, R.C., McDowall, M.A., Webb, E.C., Zerner, B. (1972).Biochim.Biophys.Acta 257, 264–272Google Scholar
  3. Bahl, P.P., Smith, E.L. (1965). J.Biol.Chem. 240, 3585–3593Google Scholar
  4. Bitar, K., Vinogradov, S.N., Nolan, C., Weiss, L.J., Margoliash, E. (1972). Biochem.J. 129, 561–569Google Scholar
  5. Brown, R.H., Richardson, M., Boulter, D., Ramshaw, J.A.M., Jeffries, R.P.S. (1972). Biochem.J. 128, 971–974Google Scholar
  6. Chan, S.K. (1970). Biochim.Biophys.Acta 221, 497–501Google Scholar
  7. Chan, S.K., Margoliash, E. (1966). J.Biol.Chem. 241, 507–515Google Scholar
  8. Chan, S.K., Margoliash, E. (1966). J.Biol.Chem. 241, 335–348Google Scholar
  9. Chan, S.K., Tulloss, I. Margoliash, E. (1966). Biochemistry 5, 2586–2597Google Scholar
  10. Dayhoff, M.O. (1972). Atlas of protein sequence and structure, Vol. 5. Washington: Natl.Biomed.Res.FoundationGoogle Scholar
  11. Dickerson, R.E. (1971). J.Mol.Evol. 1, 26–45Google Scholar
  12. Dickerson, R.E., Tokano, T., Eisenberg, D., Kallai, O.B., Samson, L., Cooper, A., Margoliash, E. (1971). J.Biol.Chem. 246, 1511–1533Google Scholar
  13. Fitch, W.M. (1967). J.Mol.Biol. 26, 499–507Google Scholar
  14. Fitch, W.M. (1970). Syst.Zool. 19, 99–113Google Scholar
  15. Fitch, W.M. (1971a). Syst.Zool. 20, 406–416Google Scholar
  16. Fitch, W.M. (1971b). Biochem.Genet. 5, 231–241Google Scholar
  17. Fitch, W.M. (1972a). Haematologie und Bluttransfusion 10, 177–215Google Scholar
  18. Fitch, W.M. (1972b). Brookhaven Biol. 23, 186–216Google Scholar
  19. Fitch, W.M. (1972c). Humangenetik 16, 67–69Google Scholar
  20. Fitch, W.M. (1973a). J.Mol.Evol. 2, 123–136Google Scholar
  21. Fitch, W.M. (1973b). J.Mol.Evol. 2, 181–186Google Scholar
  22. Fitch, W.M. (1975). In: Molecular study of biological evolution, F.J. Ayala, ed. Sunderland, Mass.: Sinauer Assoc.Google Scholar
  23. Fitch, W.M., Farris, J.S. (1974). J.Mol.Evol. 3, 263–278Google Scholar
  24. Fitch, W.M., Margoliash, E. (1967). Science 155, 279–284Google Scholar
  25. Fitch, W.M., Margoliash, E. (1970). In: Evolutionary biology, Steere, Dobzhansky, Hecht, eds., Vol. IV, pp. 67–109. New York: Appleton-Century-CroftsGoogle Scholar
  26. Fitch, W.M., Markowitz, E. (1970). Biochem.Genet. 4, 579–593Google Scholar
  27. Goldstone, A., Smith, E.L. (1966). J.Biol.Chem. 241, 4480–4486Google Scholar
  28. Goldstone, A., Smith, E.L. (1967). J.Biol.Chem. 242, 4702–4710Google Scholar
  29. Gürtler, L., Horstmann, H.J. (1970). Eur.J.Biochem. 12, 48–79Google Scholar
  30. Gürtler, L., Horstmann, H.J. (1971). FEBS Letters 18, 106–108Google Scholar
  31. Hartigan, J.A. (1973). Biometrics 29, 53–65Google Scholar
  32. Heller, J., Smith, E.L. (1966). J.Biol.Chem. 241, 3165–3180Google Scholar
  33. Holmquist, R. (1972). J.Mol.Evol. 1, 211–222Google Scholar
  34. Kimura, A. (1968). Nature 217, 624–626Google Scholar
  35. Kreil, G. (1963). Z.Physiol.Chem. 334, 154–166Google Scholar
  36. Langley, C.H., Fitch, W.M. (1973). In: Genetic structure of populations, N.E. Morton, ed., pp. 246–262. Honolulu: Univ.Press of HawaiiGoogle Scholar
  37. Langley, C.H., Fitch, W.M. (1974). J.Mol.Evol. 3, 161–177Google Scholar
  38. Lederer, F. (1972). Eur.J.Biochem. 31, 144–147Google Scholar
  39. Lederer, F., Simon, A.M., Verdiere, J. (1972). Biochem.Biophys.Res.Comm. 47, 55–58Google Scholar
  40. Lehmann, H., Carrell, R.W. (1969). Brit.Med.Bull. 25, 14–23Google Scholar
  41. Lin, D.K., Niece, R.L., Fitch, W.M. (1973). Nature 241, 533–535Google Scholar
  42. Margoliash, E., Fitch, W.M. (1968). N.Y.Acad.Sci. 151, 359–381Google Scholar
  43. Margoliash, E., Fitch, W.M., Markowitz, E., Dickerson, R.E. (1972). In: Oxidation-reduction enzymes, A. Ehrenberg, ed., pp. 5–17. Stockholm: WirkselGoogle Scholar
  44. Margoliash, E., Smith, E. (1965). In: Evolving genes and proteins, H.J. Vogel, ed., pp. 221–242. New York: Academic PressGoogle Scholar
  45. Margoliash, E., Smith, E.L., Kreil, G., Tuppy, H. (1961). Nature 192, 1121–1127Google Scholar
  46. Markowitz, E. (1970). Biochem.Genet. 4, 595–601Google Scholar
  47. Matsubara, H., Smith, E.L. (1963). J.Biol.Chem. 238, 2732–2753Google Scholar
  48. McDowell, M.A., Smith, E.L. (1965). J.Biol.Chem. 240, 4635–4647Google Scholar
  49. Morgan, W.T., Hensley, C.P., Jr., Riehm, J.P. (1972). J.Biol.Chem. 247, 6555–6565Google Scholar
  50. Nakashima, T., Higan, H., Matsubara, H., Benson, A., Yasunobu, K.T. (1966). J.Biol.Chem. 241, 1166–1177Google Scholar
  51. Nakayama, T., Titani, K., Narita, K. (1971). J.Biochem.(Tokyo) 70, 311–326Google Scholar
  52. Narita, K., Titani, K. (1968). J.Biochem. (Tokyo) 63, 226–241Google Scholar
  53. Narita, K., Titani, K. (1969). J.Biochem. (Tokyo) 65, 259–267Google Scholar
  54. Needleman, S.B., Margoliash, E. (1966). J.Biol.Chem. 241, 853–863Google Scholar
  55. Nolan, C., Fitch, W.M., Uzzell, T., Weiss, L.J., Margoliash, E. (1973). Biochemistry 12, 4052–4060Google Scholar
  56. Nolan, C., Margoliash, E. (1966). J.Biol.Chem. 241, 1049–1059Google Scholar
  57. Nolan, C., Margoliash, E. (1968). Ann.Rev.Biochem. 37, 727–789Google Scholar
  58. Ohta, T. (1974). Nature 252, 351–354Google Scholar
  59. Pettigrew, G.W. (1972). Fed.Eur.Biochem.Soc.Lett. 22, 64–66Google Scholar
  60. Pettigrew, G.W. (1973). Nature 241, 531–533Google Scholar
  61. Ramshaw, J.A.M., Thompson, E.W., Boulter, D. (1970). Biochem.J. 119, 535–539Google Scholar
  62. Ramshaw, J.A.M., Richardson, M., Boulter, D. (1971). Eur.J.Biochem. 23, 475–583Google Scholar
  63. Richardson, M., Ramshaw, J.A.M., Boulter, D. (1971). Biochim.Biophys.Acta 251, 331–333Google Scholar
  64. Rothfus, J.A., Smith, E.L. (1965). J.Biol.Chem. 240, 4277–4283Google Scholar
  65. Sokolovsky, M., Moldovan, M. (1972). Biochem.J. 11, 145–149Google Scholar
  66. Stevens, F., Glazer, A.N., Smith, E.L. (1967). J.Biol.Chem. 242, 2764–2779Google Scholar
  67. Stewart, J.W., Margoliash, E. (1965).Can.J.Biochem. 43, 1187–1206Google Scholar
  68. Sugeno, K., Narita, K., Titani, K. (1971). J.Biochem.(Tokyo) 70, 659–682Google Scholar
  69. Thompson, E.W., Laycock, M.V., Ramshaw, J.A.M., Boulter, D. (1970). Biochem.J. 117, 183–192Google Scholar
  70. Thompson, E.W., Richardson, M., Boulter, D. (1970). Biochem.J. 121, 439–446Google Scholar
  71. Thompson, E.W., Richardson, M., Boulter, D. (1971). Biochem.J. 124, 779–781Google Scholar
  72. Thompson, E.W., Richardson, M., Boulter, D. (1971). Biochem.J. 124, 783–785Google Scholar
  73. Thompson, E.W., Notton, B.A., Richardson, M., Boulter, D. (1971). Biochem.J. 124, 787–791Google Scholar
  74. Uzzell, T., Corbin, K.W. (1971). Science 172, 1089–1096Google Scholar
  75. Vogel, F. (1969). Humangenetik 8, 1–26Google Scholar
  76. Vogel, F. (1972a). J.Mol.Evol. 1, 334–367Google Scholar
  77. Vogel, F. (1972b). Humangenetik 16, 71–76Google Scholar
  78. Vogel, H., Derancourt, J., Zuckerkandl, E. (1971). In: Peptides, pp. 339–346. Amsterdam: North-HollandGoogle Scholar
  79. Zuckerkandl, E., Derancourt, J., Vogel, H. (1971). J.Mol.Biol. 59, 473–490Google Scholar
  80. Zuckerkandl, E., Pauling, L. (1965). In: Evolving genes and proteins, H.J. Vogel, ed., pp. 97–166. New York: Academic PressGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Walter M. Fitch
    • 1
  1. 1.Department of Physiological ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations