Journal of Muscle Research & Cell Motility

, Volume 13, Issue 1, pp 35–38 | Cite as

Immunoelectron microscopic epitope locations of titin in rabbit heart muscle

  • Sandra Pierobon-Bormioli
  • Donatella Biral
  • Romeo Betto
  • Giovanni Salviati


The location of cardiac titin epitopes in the sarcomere of rabbit cardiac, atrial and ventricular muscle was studied by using polyclonal antibodies against skeletal muscle titin. The results show that incubation with the antibody leads to the appearance of four electron-dense stripes in the A band of both atrial and ventricular cardiac muscle. The location and intensity of these stripes were identical to those observed in skeletal muscle. In conclusion we demonstrate that titins from skeletal and cardiac muscles share some common antigenic determinants.


Skeletal Muscle Polyclonal Antibody Cardiac Muscle Heart Muscle Antigenic Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Furst, D. O., Osborn, M., Nave, R. &Weber, K. (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten non-repetitive epitopes starting at the Z-line extends close to the M-line.J. Cell Biol. 106, 1563–72.PubMedGoogle Scholar
  2. Hill, C. &Weber, K. (1986) Monoclonal antibodies distinguish titins from heart and skeletal muscle.J. Cell Biol. 102, 1099–1108.PubMedGoogle Scholar
  3. Horowits, R. &Podolsky, R. J. (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments.J. Cell Biol. 105, 2217–23.PubMedGoogle Scholar
  4. Hu, D. H., Kumura, S. &Maruyama, K. (1986) Sodium dodecyl sulphate gel electrophoresis studies of connectin-like high molecular weight proteins of various types of vertebrate and invertebrate muscles.J. Biochem. 99, 1485–92.PubMedGoogle Scholar
  5. Kurzban, G. P. &Wang, K. (1988) Giant polypeptides of skeletal muscle titin: sedimentation equilibrium in guanidine hydrochloride.Biochem. Biophys. Res. Comm. 150, 1155–61.PubMedGoogle Scholar
  6. Locker, R. H. &Wild, D. J. C. (1986) A comparative study of high molecular weight proteins in various types of muscle across the animal kingdom.J. Biochem. (Tokyo)99, 1473–84.Google Scholar
  7. Maruyama, K., Kimura, S., Ohashi, K. &Kuwano, Y. (1981) Connectin, an elastic protein of muscle. Identification of ‘titin’ with connectin.J. Biochem. (Tokyo)89, 701–9.Google Scholar
  8. Maruyama, K. (1986) Connectin, an elastic filamentous protein of striated muscle.Int. Rev. Cytol. 104, 81–114.PubMedGoogle Scholar
  9. Maruyama, K., Yoshioka, T., Higuchi, H., Ohashi K., Kumura, S. &Natori, R. (1985) Connectin filaments link thick filaments and Z-lines in frog skeletal muscle as revealed by immunoelectron microscopy.J. Cell Biol. 101, 2167–72.PubMedGoogle Scholar
  10. Pierobon-Bormioli, S., Betto, R. &Salviati, G. (1989) The organization of titin (connectin) and nebulin in the sarcomeres: an immunocytolocalization study.J. Muscle Res. Cell Motil. 10, 446–56.PubMedGoogle Scholar
  11. Salviati, G., Betto, R., Ceoldo, S. &Pierobon-Bormioli, S. (1990) Morphological and functional characterization of the endosarcomeric elastic filament.Am. J. Physiol 259, C144-C149.PubMedGoogle Scholar
  12. Schultheiss, T., Zhongxiang, L., Lu, M. H., Murray, J., Fischman, D. A., Weber, K, Masaki, T., Imamura, M. &Holtzer, H. (1990) Differential distribution of subsets of myofibrillar proteins in cardiac non-striated and striated myofibrils.J. Cell Biol. 110, 1159–72.PubMedGoogle Scholar
  13. Tokuyasu, K. T. (1989) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. III Generation of fasciae adherentes and costameres.J. Cell Biol. 108, 43–53.PubMedGoogle Scholar
  14. Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications.Proc. Natl. Acad. Sci. (USA)76, 4350–4.Google Scholar
  15. Wang, K., McLure, J. &Tu, A. (1979) Titin: major myofibrillar components of striated muscle.Proc. Natl. Acad. Sci. (USA)76, 3698–702.Google Scholar
  16. Wang, K. (1982) Purification of titin and nebulin.Methods Enzymol. 85b, 264–74.Google Scholar
  17. Wang, K. (1985) Sarcomere-associated cytoskeletal lattices in striated muscle, review and hypothesis. InCell and Muscle Motility. (edited byShay, J. W.) Vol. 6, pp. 315–69. New York, London: Plenum Press.Google Scholar
  18. Wang, S. M. &Greaser, M. L. (1985) Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils.J. Muscle Res. Cell Motil,6, 293–312.PubMedGoogle Scholar
  19. Wang, S. M., Greaser, M. L., Schultz, E., Bulinski, J. C., Lin, J. J-C. &Lessard, J. L. (1988) Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin and myosin.J. Cell Biol. 107, 1075–83.PubMedGoogle Scholar
  20. Whiting, A., Wardale, J. &Trinick, J. (1989) Does titin regulate the length of muscle thick filaments?J. Mol. Biol. 205, 263–8.PubMedGoogle Scholar
  21. Winegrad, S. (1986) Membrane control of force generation. InThe Heart and Cardiovascular System. (edited byFozzard, H. A., Haber, E., Jennings, R. B., Katz, A. M. &Morgan, H. E.) Scientific Foundation Vol. 1, pp. 703–73. New York: Raven Press.Google Scholar
  22. Wood, D. S., Zollmann, J. &Reuben, J. P. (1978) Human skeletal muscle. Properties of the ‘chemically skinned’ fibres.Science 187, 1075–6.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Sandra Pierobon-Bormioli
    • 1
  • Donatella Biral
    • 1
  • Romeo Betto
    • 1
  • Giovanni Salviati
    • 1
  1. 1.CNR Unit for Muscle Biology and Physiopathology, Institute of General PathologyUniversity of PadovaPadovaItaly

Personalised recommendations