Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

DHP receptors and excitation-contraction coupling

This is a preview of subscription content, log in to check access.


  1. Adams, B. A., Tanabe, T., Mikami, A., Numa, S. &Beam, K. G. (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs.Nature 346, 569–72.

  2. Almers, W. (1978) Gating currents and charge movements in excitable membranes.Reviews Physiol., Biochem. Pharmacol. 82, 97–190.

  3. Anderson, K., Grunwald, R., El-Hashem, A., Sealock, R. &Meissner, G. (1990) High affinity ryanodine and PN200-110 binding to rabbit skeletal muscle triads.Biophys. J. 57, 171a.

  4. Appelt, D., Buenviaje, B., Champ, C. &Franzini-Armstrong, C. (1989) Quantitation of ‘junctional feet’ content in two types of muscle fiber from hind limb muscles of the rat.Tissue & Cell 21, 783–94.

  5. Arreola, J., Calvo, J., Garcia, M. C. &Sanchez, J. A. (1987) Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate.J. Physiol. 393, 307–30.

  6. Beam, K. G., Knudson, C. M. &Powell, J. A. (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells.Nature 320, 168–70.

  7. Beam, K. G. &Knudson, C. M. (1988) Effect of postnatal development on calcium currents and slow charge movement in mammalian skeletal muscle.J. Gen. Physiol. 91, 799–815.

  8. Bean, B. P., Nowycky, M. C. &Tsien, R. W. (1984) β-Adrenergic modulation of calcium channels in frog ventricular heart cells.Nature 307, 371–5.

  9. Bean, B. P. &Rios, E. (1989) Nonlinear charge movement in mammalian cardiac ventricular cells.J. Gen. Physiol. 94, 65–93.

  10. Block, B. A., Imagawa, T., Campbell, K. P. &Franzini-ArmStrong, C. (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle.J. Cell Biol. 107, 2587–600.

  11. Campbell, K. P., Leung, A. T. &Sharp, A. H. (1988) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel.Trends Neurosci. 11, 425–30.

  12. Catterall, W. A. (1991) Functional subunit structure of voltagegated calcium channels.Science 253, 1499–500.

  13. Chang, C. F., Gutierrez, L. M., Mundina-Weilenmann, C. &Hosey, M. M. (1991) Dihydropyridine-sensitive calcium channels from skeletal muscle. II. Functional effects of differential phosphorylation of channel subunits.J. Biol. Chem. 266, 16395–400.

  14. Chen, W. &Hui, C. S. (1991) Differential blockade of charge movement components in frog cut twitch fibres by nifedipine.J. Physiol. 444, 579–603.

  15. Cohen, N. M. &Lederer, W. J. (1988) Changes in the calcium current of rat heart ventricular myocytes during development.J. Physiol. 406, 115–46.

  16. Coronado, R. &Affolter, H. (1986) Characterization of dihydropyridine-sensitive calcium channels from purified skeletal muscle transverse tubules. In:Ion Channel Reconstitution (edited byMiller, C.) pp. 483–505. New York: Plenum Press.

  17. Cullen, M. T., Hollingworth, S. &Marshall, M. W. (1984) A comparative study of the transverse tubular system of the rat extensor digitorum longus and soleus muscles.J. Anat. 138, 297–308.

  18. Curtis, B. M. &Catterall, W. A. (1986) Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules.Biochem. 25, 3077–83.

  19. Damiani, E., Tobaldin, G., Volpe, P. &Margreth, A. (1991) Quantitation of ryanodine receptor of rabbit skeletal muscle, heart and brain.Biochem. Biophys. Res. Comms. 175, 858–65.

  20. De Jongh, K. S., Merrick, D. K. &Catterall, W. A. (1989) Subunits of purified calcium channels: A 212-kDa form of α1 and partial amino acid sequence of a phosphorylation site of an independent β subunit.Proc. Nat. Acad. Sci. USA 86, 8585–9.

  21. Dulhunty, A. F. &Gage, P. W. (1983) Asymmetrical charge movement in slow- and fast-twitch mammalian muscle fibres in normal and paraplegic rat.J. Physiol. 341, 213–31.

  22. Dulhunty, A. F. &Gage, P. W. (1988) Effects of extracellular calcium concentration and dihydropyridines on contraction in mammalian skeletal muscle.J. Physiol. 399, 63–80.

  23. Dulhunty, A. F., Gage, P. W. &Lamb, G. D. (1986) Differential effects of thyroid hormone on T-tubules and terminal cisternae in rat muscles: an electrophysiological and morphometric analysis.J. Muscle Res. Cell Motil. 7, 225–36.

  24. Dunn, S. M. J. &Bladen, C. (1991) Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: evidence for low-affinity sites and for the involvement of G proteins.Biochem. 30, 5716–21.

  25. Eisenberg, R. S., Mccarthy, R. T. &Milton, R. L. (1983) Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600.J. Physiol. 341, 495–505.

  26. Fabiato, A. &Fabiato, F. (1978) Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and new-born rat ventricles.Ann. New York Acad. Sci. 307, 491–521.

  27. Feldmeyer, D. &Lüttgau, H. C. (1988) The effect of perchlorate on Ca currents and mechanical force in skeletal muscle fibres.Pflügers Archiv 411, R190.

  28. Feldmeyer, D., Melzer, W., Pohl, B. &Zöllner, P. (1990) Fast gating kinetics of the slow Ca2+ current in cut skeletal muscle fibres of the frog.J. Physiol. 425, 347–67.

  29. Field, A. C., Hill, C. &Lamb, G. D. (1988) Asymmetric charge movement and calcium currents in ventricular myocytes of neonatal rat.J. Physiol 406, 277–97.

  30. Fleischer, S. &Inui, M. (1989) Biochemistry and biophysics of excitation-contraction coupling.Ann. Review Biophys. Biophys. Chem. 18, 333–64.

  31. Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavalie, A. &Trautwein, W. (1986) Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel.Nature 323, 66–8.

  32. Franzini-Armstrong, C. (1975) Membrane particles and transmission at the triad.Fed. Procs. 34(5), 1382–9.

  33. Franzini-Armstrong, C., Ferguson, D. G. &Champ, C. (1988) Discrimination between fast- and slow-twitch fibres of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane.J. Muscle Res. Cell Motil. 9, 403–14.

  34. Franzini-Armstrong, C., Pincon-Raymond, M. &Rieger, F. (1991) Muscle fibres from dysgenic mouse in vivo lack a surface component of peripheral couplings.Develop. Biol. 146, 364–76.

  35. Gallant, E. M. &Goettl, V. M. (1985) Effects of calcium antagonists on mechanical responses of mammalian skeletal muscles.Eur. J. Pharmacol. 117, 259–65.

  36. Glossmann, H., Ferry, D. R. &Boschek, C. B. (1983) Purification of the putative calcium channel from skeletal muscle with the aid of [3H]-nimodipine binding.Naunyn-Schmiedeberg's Archiv Pharmacol. 323, 1–11.

  37. Gomolla, M., Gottschalk, G. &Lüttgau, H. Ch. (1983) Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres.J. Physiol. 343, 197–214.

  38. Green, F. J., Farmer, B. B., Wiseman, G. L., Jose, M. J. L. &Watanabe, A. M. (1985) Effect of membrane depolarization on binding of [3H]-nitrendipine to rat cardiac myocytes.Circ. Res. 56, 576–85.

  39. Gutierrez, L. M., Brawley, R. M. &Hosey, M. M. (1991) Dihydropyridine-sensitive calcium channels from skeletal muscle.J. Biol Chem. 266, 16387–94.

  40. Hadley, R. W. &Lederer, W. J. (1989) Intramembrane charge movement in guinea-pig and rat ventricular myocytes.J. Physiol. 415, 601–24.

  41. Hollingworth, S. &Marshall, M. W. (1981) A comparative study of charge movements in rat and frog skeletal muscle fibres.J. Physiol. 321, 583–602.

  42. Huang, C. L.-H. (1990) Voltage-dependent block of charge movement component by nifedipine in frog skeletal muscle.J. Gen. Physiol. 96, 535–57.

  43. Hui, C. S. (1990) D600 binding sites on voltage-sensors for excitation-contraction coupling in frog skeletal muscle are intracellular.J. Muscle Res. Cell Motil. 11, 471–88.

  44. Hui, C. S., Milton, R. L. &Eisenberg, R. S. (1984) Charge movement in skeletal muscle fibers paralyzed by the calcium-entry blocker D600.Proc. Nat. Acad. Sci. USA 81, 2582–5.

  45. Hymel, L., Striessnig, J., Glossmann, H. &Schindler, H. (1988) Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers.Proc. Nat. Acad. Sci. USA 85, 4290–4.

  46. Kokubun, S., Prod'hom, B., Porzig, H. &Reuter, H. (1986) Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers.Mol. Pharmacol. 30, 571–84.

  47. Lacerda, A. E., Kim, H. S., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, F., Birnbaumer, L. &Brown, A. M. (1991) Normalization of current kinetics by interaction between the α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel.Nature 352, 527–30.

  48. Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q.-Y. &Meissner, G. (1988) Purification and reconstitution of the calcium release channel from skeletal muscle.Nature 331, 315–9.

  49. Lamb, G. D. (1985) The effect of nifedipine on asymmetric charge movement in rabbit muscle.Proc. Australian Physiol. Pharmacol. Soc. 16, 2P.

  50. Lamb, G. D. (1986) Components of charge movement in rabbit muscle: the effect of tetracaine and nifedipine.J. Physiol. 376, 85–100.

  51. Lamb, G. D. (1987) Asymmetric charge movement in polarized and depolarized muscle fibres of the rabbit.J. Physiol. 383, 349–67.

  52. Lamb, G. D. (1991) Ca2+ channels or voltage-sensors?Nature 352, 113.

  53. Lamb, G. D. &Walsh, T. (1987) Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit.J. Physiol. 393, 595–617.

  54. Lee, Y. S., Ondrias, K., Duhl, A.J., Ehrlich, B. E. &Kim, D. H. (1991) Comparison of calcium release from sarcoplasmic reticulum of slow and fast twitch muscles.J. Membr. Biol. 122, 155–63.

  55. Leung, A. T., Imagawa, T., Block, B., Franzini-Armstrong, C. &Campbell, K. P. (1988) Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle.J. Biol. Chem. 263, 994–1001.

  56. Lew, W. Y. W., Hryshko, L. V. &Bers, D. M. (1991) Dihydropyridine receptors are primarily functional L-type calcium channels in rabbit ventricular myocytes.Circul. Res. 69, 1139–45.

  57. Lüttgau, H. C., Gottschalk, G., Kovacs, L. &Fuxreiter, M. (1983) How perchlorate improves excitation-contraction coupling in skeletal muscle fibers.Biophys. J. 43, 247–9.

  58. Lüttgau, H. Ch. &Stephenson, D. G. (1986) Ion movements in skeletal muscle in relation to the activation of contraction. InPhysiology of Membrane Disorders (edited byAndreoli, T. E., Hoffmann, J. F., Fanestil, D. D. &Schulz, S. G.) pp. 449–468. New York: Plenum Press.

  59. Ma, J., Mundiña-Weilenmann, C., Hosey, M. M. &Rios, E. (1991) Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 1. Kinetics and voltage depen-dence of gating.Biophys. J. 60, 890–901.

  60. Mccleskey, E. W. (1985) Calcium channels and intracellular calcium release are pharmacologically different in frog skeletal muscle.J. Physiol. 361, 231–49.

  61. Melzer, W., Schneider, M. F., Simon, B. J. &Szucs, G. (1986) Intramembrane charge movement and calcium release in frog skeletal muscle.J. Physiol. 373, 481–511.

  62. Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S. &Numa, S. (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel.Nature 340, 230–3.

  63. Mobley, B. A. &Eisenberg, B. R. (1975) Sizes of components in frog skeletal muscle measured by methods of stereology.J. Gen. Physiol 66, 31–45.

  64. Mundiña-Weilenmann, C., Ma, J., Rios, E. &Hosey, M. M. (1991) Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 2. Effects of phosphorylation by cAMP-dependent protein kinase.Biophys. J. 60, 902–9.

  65. Neuhaus, R., Rosenthal, R. &Lüttgau, H. Ch. (1990) The effects of dihydropyridine derivatives on force and Ca2+ current in frog skeletal muscle fibres.J. Physiol. 427, 187–209.

  66. Nunoki, K., Florio, V. &Catterall, W. A. (1989) Activation of purified calcium channels by stoichiometric protein phosphorylation.Proc. Nat. Acad. Sci. USA 86, 6816–20.

  67. Olivares, E. B., Tanksley, S. J., Airey, J. A., Beck, C. F., Ouyang, Y., Deerinck, T. J., Ellisman, M. H. &Sutko, J. L. (1991) Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms.Biophys. J. 59, 1153–63.

  68. Olivetti, G., Anversa, P. &Loud, A. V. (1980) Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat: II. Tissue composition, capilliary growth and sarcoplasmic reticulum.Circul. Res. 46, 503–12.

  69. Perez-Reyes, E., Kim, H. S., Lacerda, A. E., Horne, W., Wie, X., Rampe, D., Campbell, K. P., Brown, A. M. &Birnbaumer, L. (1989) Induction of calcium currents by the expression of the α1-subunit of the dihydropyridine receptor from skeletal muscle.Nature 340, 233–6.

  70. Pizarro, G., Brum, G., Fill, M., Fitts, R., Rodriguez, M., Uribe, I. &Rios, E. (1988) The voltage sensor of skeletal muscle excitation-contraction coupling: a comparison with Ca2+ channels. In:The Ca Channel: structure, function and implications (edited byMorad, M., Nayler, W., Skazda, S. &Schramm, M.) pp. 138–157. Berlin: Springer-Verlag.

  71. Pizarro, G., Csernoch, L., Uribe, I., Rodriguez, M. &Rios, E. (1991) The relationship between Qγ and Ca release from the sarcoplasmic reticulum in skeletal muscle.J. Gen. Physiol. 97, 913–47.

  72. Rios, E., Brum, G. &Stefani, E. (1986) E-C coupling effects of interventions that reduce slow Ca current suggest a role of t-tubule Ca channels in skeletal muscle function.Biophys. J. 49, 13a.

  73. Rios, E. &Brum, G. (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle.Nature 325, 717–20.

  74. Rios, E. &Pizarro, G. (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle.Physiol. Rev. 71, 849–908.

  75. Sanguinetti, M. C., Krafte, D. S. &Kass, R. S. (1986) Voltage-dependent modulation of Ca channel current in heart cells by Bay K8644.J. Gen. Physiol. 88, 369–92.

  76. Schneider, M. F. &Chandler, W. K. (1973) Voltage-dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling.Nature 242, 244–6.

  77. Schneider, T. &Hofmann, F. (1988) The bovine cardiac receptor for calcium channel blockers is a 195-kDa protein.Eur. J. Biochem. 174, 369–75.

  78. Schwartz, L. M., Mccleskey, E. W. &Almers, W. (1985) Dihydropyridine receptors in muscle are voltage-dependent but most are not functional calcium channels.Nature 314, 747–51.

  79. Simon, B. &Hill, D. (1991) The activation time course of calcium release in frog skeletal muscle follows the fourth power of charge movement.Biophys. J. 59, 64a.

  80. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. &Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle.Nature 328, 313–8.

  81. Tanabe, T., Beam, K. G., Powell, J. A. &Numa, S. (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA.Nature 336, 134–9.

  82. Trautwein, W., Cavalié, A., Flockerzi, V., Hofmann, F. &Pelzer, D. (1987) Modulation of calcium channel function by phosphorylation in guinea pig ventricular cells and phospholipid bilayer membranes.Circul. Res. 61, I 17–1 23.

  83. Varadi, G., Lory, P., Schultz, D., Varadi, M. &Schwartz, A. (1991) Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel.Nature 352, 159–162.

  84. Wibo, M., Bravo, G. &Godfraind, T. (1991) Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors.Circul. Res. 68, 662–73.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lamb, G.D. DHP receptors and excitation-contraction coupling. J Muscle Res Cell Motil 13, 394–405 (1992). https://doi.org/10.1007/BF01738035

Download citation