Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A reappraisal of the relative merits of SPET and PET in the quantitation of neuroreceptors: the advantage of a longer half-life!

  • 33 Accesses

  • 29 Citations

This is a preview of subscription content, log in to check access.


  1. 1.

    Comar D, Mazière M, Godot JM, Berger G, Soussaline F, Menini D, Arfel G, Naguet R. Visualisation of11C-flunitrazepam displacement in the brain of the live baboon.Nature 1979; 280: 329–331.

  2. 2.

    Comar D, Mazière M, Cepeda C, Godot JM, Minini C, Naquet R. The kinetics and displacement of11C-flunitrazepam in the brain of the living baboon.Eur J Pharmacol 1981; 75: 21–28.

  3. 3.

    Mazière M, Prenant C, Sastre J, Crouzel M, Comard D, Hantraye P, Kaijima M, Guibert B, Naquet R. C11-RO 15 1788 et C11-flunitrazépam, deux coordinats pour l'étude par tomographis par émission de positions des sites de liaison des benzodiazépines.CR Acad Sci Paris 1983; 293: 871–876.

  4. 4.

    Abadie P, Baron JC. In vivo studies of the central benzodiazepine receptors in the human brain with positron emission tomography. In: Diksic M, Reba RC, eds. Radiopharmaceutics and brain pathology studied with PET and SPECT. Boca Raton, FL.: CRC Press; 1991; 357–379.

  5. 5.

    Johnson EW, Woods SW, Zoghbi S, McBride BJ, Baldwin RM, Innis RB. Receptor binding characterization of the benzodiazepine radioligand125I-Ro16-0154: potential probe for SPECT brain imaging.Life Sci 1990; 47: 1535.

  6. 6.

    Lassen NA. Neuroreceptor quantitation in vivo by the steadystate principle using constant infusion or bolus injection of radioactive tracers.J Cereb Blood Flow Metab 1992; 12: 709–716.

  7. 7.

    Laruelle M, Abi-Dargham A, Al-Tikriti MS, Baldwin RM, Zea-Ponce Y, Zoghbi SS, Charney DS, Hoffer PB, Innis RB. SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates. II. Equilibrium analysis of constant infusion experiments and correlation within vitro parameters.J Cereb Blood Flow Metab 1994; 14: 453–465.

  8. 8.

    Videbæk C, Friberg L, Holm S, Wammen S, Foged C, Andersen JV, Dalgaard L, Lassen NA. Benzodiazepine receptor equilibrium constants for flumazenil and medazolam determined in humans with the single photon emission computer tomography tracer (123-I)iomazenil.Eur J Pharmacol 1993; 249: 43–51.

  9. 9.

    Laruelle M, Dyck Cv, Abi-Dargham A, Zea-Ponce Y, Zoghbi SS, Charney DS, Baldwin M, Hoffer PB, Kung HF, Innis RB. Compartmental modeling of iodine-123-iodobenzofuran binding to dopamine D2 receptors in healthy subjects.J Nucl Med 1994; 35: 743–754.

  10. 10.

    Wagner HN Jr, Burns HD, Dannals RF, Wong DF, Långström B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SS, Lukas SE, Kramer AV, Kuhar MJ. Imaging of dopamine receptors in the human brain by positron tomography. In: Greitz T, Ingvar DH, Widén L, eds.The metabolism of the human in brain studied with positron emission tomography. New York: Raven Press; 1985: 251–267.

  11. 11.

    Farde L, Ehrin E, Ericsson L, Greitz T, Hall H, Sedvall G. [11C]labelled dopamine-D2 receptor antagonists as tools for quantitative studies on dopamine receptors in the human brain.J Cereb Blood Flow Metab 1985; 5 (S1): 595–596.

  12. 12.

    Blomqvist G, Pauli S, Garde L, Eriksson L, Persson A, Halldin C. Maps of receptor binding parameter in the human brain — a kinetic analysis of PET measurements.Eur J Nucl Med 1990; 16: 257–265.

  13. 13.

    Frey KA, Koeppe RA, Mulholland GK, Jewett D, Hichwa R, Ehrenkaufer RLE, Carey JE, Wieland DM, Kuhl DE, Agranoff BW. In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography.J Cereb Blood Flow Metab 1992; 12: 147–154.

  14. 14.

    Koeppe RA, Holthoff A, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil for the estimation of ligand transport rate and receptor distribution using positron emission tomography.J Cereb Blood Flow Metab 1991; 11: 735–744.

  15. 15.

    Iida H, Itoh H, Bloomfield P, et al. A method to quantitate CBF using a rotating gamma camera and I-123-amphetamine (IMP) with one blood sampling.Eur J Nucl Med 1994; 21: 1072–1084.

  16. 16.

    Onishi Y, Yonekura Y, Mukai T, Nishizawa S, Tanaka F, Okazawa H, Ishizu K, Fujita T, Shibasaki H, Konishi J. Simple quantification of benzodiazepine receptor binding and ligand transport using iodine-123-iomazenil and two SPECT scans.J Nucl Med 1995; 36: 1201–1210.

  17. 17.

    Lassen NA, Bartenstein PA, Lammertsma AA, Prevett MC, Turton DR, Luthra SK, Osman S, Bloomfield PM, Jones T, Patsalos PN, O'Connell MT, Duncan JS, Vanggaard Andersen J. Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET: application of the steady-state principle.J Cereb Blood Flow Metab: 1995; 15: 152–165.

  18. 18.

    Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. Quantitative model for the in vivo assessment of drug binding sites with positron tomography.Ann Neurol 1984; 15: 217–227.

  19. 19.

    Seibyl JP, Walloce E, Smith EO, Stabin M, Baldwin RM, Zoghbi S, Zea-Ponce Y, Gao Y, Zhang WY, Neumeyer JL, Zubal IG, Charney DS, Hoffer PB, Innis RB. Whole-body biodistribution, radiation absorbed dose and brain SPECT imaging with iodine-123-β-CIT in healthy human subjects.J Nucl Med 1994; 35: 764–770.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lassen, N.A. A reappraisal of the relative merits of SPET and PET in the quantitation of neuroreceptors: the advantage of a longer half-life!. Eur J Nucl Med 23, 1–4 (1996). https://doi.org/10.1007/BF01736982

Download citation