Rheologica Acta

, Volume 21, Issue 2, pp 184–192 | Cite as

The dynamic performance of the Weissenberg Rheogoniometer

I. Small amplitude oscillatory shearing
  • W. C. MacSporran
  • R. P. Spiers
Original Contributions

Abstract

The dynamic performance of a standard Model R18 Weissenberg Rheogoniometer has been studied in detail. The Rheogoniometer was carefully calibrated and used to measure accurately the rheological behaviour of a highly nonlinear viscoelastic polymer solution (1% polyacrylamide in 50% glycerol/water).

In this paper the elaborate procedures that were used to calibrate the electronic signal processing equipment are described. The various static and dynamic calibration/correction factors are defined and incorporated into a computer implemented calculation scheme for evaluating the linear dynamic properties from the raw digital transfer function analyser readings.

The linear dynamic properties of the polymer solution are presented together with the corresponding steady shearing properties. Both cone and plate and parallel plates geometries were used and good agreement was obtained over the wide range (six decades) of frequencies and shear rates employed.

Fluid inertia effects were found to become important when the modified Reynolds number,Reθc2 orRe(H/R)2, exceeded a value of about 0.1. These effects had a strong influence on the phase angleε(ω) which could readily be detected by varying the gap angle/width. The Walters-Kemp equations were found to give consistently accurate values for the linear dynamic properties for modified Reynolds numbers up to 11.6 which was the highest reached.

Key words

Weissenberg Rheogoniometer calibration fluid inertia effect linear dynamic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weissenberg, K., S. M. Freeman, “Proceedings of the General Conference of the British Rheologists Club on the Principles of Rheological Measurement, Bedford College, London, 1946”, pp. 36–75, Thos. Nelson (1946).Google Scholar
  2. 2.
    Weissenberg, K., “Proceedings of the First International Congress on Rheology, Scheveningen, Holland, 1948”, North Holland (1948).Google Scholar
  3. 3.
    Freeman, S. M., K. Weissenberg, Nature161, 324 (1948).Google Scholar
  4. 4.
    Weissenberg, K., Proc. Roy. Soc. (London), Series A200, 183 (1950).Google Scholar
  5. 5.
    Roberts, J. E., Nature179, 487 (1950).Google Scholar
  6. 6.
    Roberts, J. E., in: G. V. W. Harrison (ed.), “Proc. 2nd Int'l. Congr. Rheol., Oxford, 1953”, pp. 91–98, Butterworth (1953).Google Scholar
  7. 7.
    Pilpel, N., Trans. Faraday Soc.50, 1369 (1954).Google Scholar
  8. 8.
    Pilpel, N., Trans. Faraday Soc.51, 1307 (1955).Google Scholar
  9. 9.
    Jobling, A., J.OCCA38, 739 (1955).Google Scholar
  10. 10.
    Philippoff, W., Trans. Soc. Rheol.1, 95 (1957).Google Scholar
  11. 11.
    Brodnyan, J. G., F. H. Gaskin, W. Philippoff, Trans. Soc. Rheol.1, 109 (1957).Google Scholar
  12. 12.
    Jobling, A., J. E. Roberts, in: F. R. Eirich (ed.), “Rheology — Theory and Applications”, Vol. 2, Ch. 13, p. 503, Academic Press (1958).Google Scholar
  13. 13.
    Jobling, A., J. E. Roberts, J. Polymer Sci.36, 421 and 433 (1959).Google Scholar
  14. 14.
    Ginn, R. F., A. B. Metzner, in: E. H. Lee (ed.), “Proc. 4th Int'l. Congr. Rheol. Providence, R.I. 1964”, Part 2, pp. 583–601, Interscience (1965).Google Scholar
  15. 15.
    Ginn, R. F., A. B. Metzner, Trans. Soc. Rheol.13, 429 (1969).Google Scholar
  16. 16.
    Miller, M. J., E. B. Christiansen, Amer. Inst. Chem. Eng. J.18, 600 (1972).Google Scholar
  17. 17.
    Russell, R. J., Ph. D. Thesis, Imperial College, London (1946).Google Scholar
  18. 18.
    Jobling, A., Ph. D. Thesis, Cambridge University (1956).Google Scholar
  19. 19.
    Lammiman, K. A., J. E. Roberts, Lab. Practice10, 766 (1961).Google Scholar
  20. 20.
    Huppler, J. D., E. Ashare, L. A. Holmes, Trans. Soc. Rheol.11, 159 (1967).Google Scholar
  21. 21.
    Ashare, E., Trans. Soc. Rheol.12, 535 (1968).Google Scholar
  22. 22.
    Ackers, L. C., M. C. Williams, J. Chem. Phys.51, 3834 (1969).Google Scholar
  23. 23.
    Endo, H., M. Nagasawa, J. Polymer Sci., Part A-28, 371 (1970).Google Scholar
  24. 24.
    Davis, S. S., J. Pharm. Sci.60, 1351 (1971).Google Scholar
  25. 25.
    Kajiura, H., H. Endo, M. Nagasawa, J. Polymer Sci., Polymer Phys. Edn.11, 2371 (1973).Google Scholar
  26. 26.
    Christiansen, E. B., W. R. Leppard, Trans. Soc. Rheol.18, 65 (1974).Google Scholar
  27. 27.
    Harris, J., K. Bogie, Rheol. Acta6, 3 (1967).Google Scholar
  28. 28.
    Ginn, R. F., Ph. D. Thesis, University of Delaware (1968).Google Scholar
  29. 29.
    Walters, K., T. E. R. Jones, in: S. Onogi (ed.), “Proc. 5th Int'l. Congr. Rheol., Kyoto, Japan, 1968”, Vol. 4, pp. 337–350, University Park Press (1969).Google Scholar
  30. 30.
    Macdonald, I. F., B. D. Marsh, Chem. Eng. Sci.24, 1615 (1969).Google Scholar
  31. 31.
    Davis, S. S., J. Pharm. Sci.60, 1356 (1971).Google Scholar
  32. 32.
    Komatsu, H., T. Mitsui, S. Onogi, Trans. Soc. Rheol.17, 351 (1973).Google Scholar
  33. 33.
    Booij, H. C., Rheol. Acta5, 215 and 222 (1966).Google Scholar
  34. 34.
    Booij, H. C., Rheol. Acta7, 202 (1968).Google Scholar
  35. 35.
    Jones, T. E. R., K. Walters, J. Phys. A. Gen. Phys.4, 85 (1971).Google Scholar
  36. 36.
    Macdonald, I. F., Trans. Soc. Rheol.17, 537 (1973).Google Scholar
  37. 37.
    Eastwood, A. R., H. A. Barnes, Rheol. Acta14, 795 (1975).Google Scholar
  38. 38.
    Powell, R. L., W. H. Schwarz, Trans. Soc. Rheol.19, 617 (1975).Google Scholar
  39. 39.
    Powell, R. L., W. H. Schwarz, J. Rheol.23, 323 (1979).Google Scholar
  40. 40.
    Huppler, J. D. et al., Trans. Soc. Rheol.11, 181 (1967).Google Scholar
  41. 41.
    Macdonald, I. F., Ph. D. Thesis, University of Wisconsin (1968).Google Scholar
  42. 42.
    Chen, I.-J., D. C. Bogue, Trans. Soc. Rheol.16, 59 (1972).Google Scholar
  43. 43.
    Sakai, M., H. Fukaya, M. Nagasawa, Trans. Soc. Rheol.16, 635 (1972).Google Scholar
  44. 44.
    Meissner, J., J. Appl. Polymer Sci.16, 2877 (1972).Google Scholar
  45. 45.
    Chang, K. I., S. S. Yoo, J. P. Hartnett, Trans. Soc. Rheol.19, 155 (1975).Google Scholar
  46. 46.
    Leppard, W. R., E. B. Christiansen, Amer. Inst. Chem. Eng. J.21, 999 (1975).Google Scholar
  47. 47.
    Nazem, F., M. G. Hansen, J. Appl. Polymer Sci.20, 1355 (1976).Google Scholar
  48. 48.
    Graessley, W. W., W. S. Park, R. L. Crawley, Rheol. Acta16, 291 (1977).Google Scholar
  49. 49.
    Takahashi, M. et al., J. Rheol.24, 517 (1980).Google Scholar
  50. 50.
    Mills, N. J., European Polymer J.5, 675 (1969).Google Scholar
  51. 51.
    Lee, K. H. et al., Trans. Soc. Rheol.14, 555 (1970).Google Scholar
  52. 52.
    Higman, R. W., Rheol. Acta12, 533 (1973).Google Scholar
  53. 53.
    Okeson, J. K., Ph. D. Thesis, Purdue University (1973).Google Scholar
  54. 54.
    Crawley, R. L., W. W. Graessley, Trans. Soc. Rheol.21, 19 (1977).Google Scholar
  55. 55.
    Harris, J., Engineering (London)202, 803 (1966).Google Scholar
  56. 56.
    Bogie, K., J. Harris, Rheol. Acta5, 212 (1966).Google Scholar
  57. 57.
    Harris, J., Solartron News, Tech. Supplt. No. 2 (March 1967).Google Scholar
  58. 58.
    Warburton, B., S. S. Davies, Rheol. Acta8, 205 (1969).Google Scholar
  59. 59.
    Blackley, D. C., J. K. Thomas, “Rubbercon '72, Proc. Int'l. Rubber Conf., Brighton, May 1972”, Paper G5, Inst. Rubber Ind. (1972).Google Scholar
  60. 60.
    Harris, J., R. Maheshwari, Rheol. Acta14, 457 (1975).Google Scholar
  61. 61.
    Laufer, Z., H. L. Jalink, A. J. Staveman, Rheol. Acta14, 641 (1975).Google Scholar
  62. 62.
    Dodge, J. S., I. M. Krieger, Trans. Soc. Rheol.15, 589 (1971).Google Scholar
  63. 63.
    Krieger, I. M., T.-F. Niu, Rheol. Acta12, 567 (1973).Google Scholar
  64. 64.
    Enthoven, N. L. M., H. L. Jalink, Rheol. Acta17, 188 (1978).Google Scholar
  65. 65.
    Powell, R. L., W. H. Schwarz, J. Polymer Sci., Polymer Phys. Edn.17, 969 (1979).Google Scholar
  66. 66.
    Menezer, E. V., W. W. Graessley, Rheol. Acta19, 38 (1980).Google Scholar
  67. 67.
    Spiers, R. P., Ph. D. Thesis, University of Bradford (1977).Google Scholar
  68. 68.
    Busby, E. T., W. C. MacSporran, J. Non-Newtonian Fluid Mech.1, 71 (1976).Google Scholar
  69. 69.
    Goulden, D. D., W. C. MacSporran, J. Non-Newtonian Fluid Mech.1, 183 (1976).Google Scholar
  70. 70.
    MacSporran, W. C., R. P. Spiers, Rheol. Acta21, 193 (1982).Google Scholar
  71. 71.
    In preparation.Google Scholar
  72. 72.
    In preparation.Google Scholar
  73. 73.
    Weissenberg Rheogoniometer Model R18 Instruction Manual, Sangamo Controls Ltd., Bognor Regis (1968).Google Scholar
  74. 74.
    Weissenberg Rheogoniometer Model R16/18, Improved Normal Force System Data Sheets, Sangamo Controls Ltd., Bognor Regis (1974).Google Scholar
  75. 75.
    Direct Reading Transducer Meters Type M 597, Instruction Manual, Sangamo Weston Controls Ltd., Bognor Regis (1974).Google Scholar
  76. 76.
    Watson, J. D., Rheol. Acta8, 201 (1969).Google Scholar
  77. 77.
    Weissenberg, K., “The Testing of Materials by Means of the Rheogoniometer”, Farol Research Engineers Ltd., Bognor Regis (1964).Google Scholar
  78. 78.
    Walters, K., “Basic Concepts and Formulae for the Rheogoniometer”, Sangamo Controls Ltd., Bognor Regis (1968).Google Scholar
  79. 79.
    Walters, K., “Rheometry”, Ch. 6, Chapman and Hall (1977).Google Scholar
  80. 80.
    Oldroyd, J. G., Quart. J. Mech. Appl. Math.4, 271 (1951).Google Scholar
  81. 81.
    Markovitz, H., J. Appl. Phys.23, 1070 (1952).Google Scholar
  82. 82.
    Walters, K., Quart. J. Mech. Appl. Math.13, 444 (1960).Google Scholar
  83. 83.
    Walters, K., Quart. J. Mech. Appl. Math.14, 431 (1961).Google Scholar
  84. 84.
    Maude, A. D., K. Walters, Nature201, 913 (1964).Google Scholar
  85. 85.
    Nally, M. C., Brit. J. Appl. Phys.16, 1023 (1965).Google Scholar
  86. 86.
    Walters, K., R. A. Kemp, in: R. E. Wetton, W. R. Whorlow (eds.), “Polymer Systems — Deformation and Flow, Proc. Brit. Soc. Rheol. Conf., Loughborough, 1966”, pp. 237–250, Macmillan (1968).Google Scholar
  87. 87.
    Walters, K., R. A. Kemp, Rheol. Acta7, 1 (1968).Google Scholar
  88. 88.
    Blackley, D. C., J. Inst. Rubber Ind.7, 15 (1973).Google Scholar
  89. 89.
    Davies, S. S., Rheol. Acta11, 199 (1972).Google Scholar
  90. 90.
    Brindley, G., D. E. Keene, J. Phys. E. J. Sci. Inst.7, 934 (1974).Google Scholar
  91. 91.
    Cox, W. P., E. H. Merz, J. Polymer Sci.28, 619 (1958).Google Scholar
  92. 92.
    Brindley, G., J. M. Broadbent, Rheol. Acta12, 48 (1973).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1982

Authors and Affiliations

  • W. C. MacSporran
    • 1
  • R. P. Spiers
    • 1
  1. 1.Schools of Chemical EngineeringUniversity of BradfordBradfordU.K.

Personalised recommendations