Klinische Wochenschrift

, Volume 65, Issue 23, pp 1115–1131 | Cite as

Significance of polyploidy in megakaryocytes and other cells in health and tumor disease

  • M. Winkelmann
  • P. Pfitzer
  • W. Schneider


Polyploidy — the doubling of chromosome sets of cells caused by a stop of mitosis at different levels of the mitotic cycle — is a phenomenon widely observed in plants, protozoa, metazoa, and animals. In man obligate polyploid tissues are found in liver parenchyma, heart muscle cells, and bone marrow megakaryocytes. Polyploidy occurs mostly in stable and highly differentiated cells and tissues. Besides age, stimulation of proliferation and increased metabolic function lead to polyploidization in these organs. Aneuploidy, however, is exclusively found in tumor cells.

Megakaryocyte differentiation and polyploidy are controlled by thrombopoietin-like activities, of which the loci of production are still unknown. Megakaryocytes are unique among polyploid mammal cells. On the precursor level they maintain their proliferative activity independently of the mammal's age. Once having entered the incomplete mitotic cycle they stop cytokinesis and develop into highly polyploid cells. Polyploidization of megakaryocytes is the basic requirement for establishing highly effective hemostasis in mammals, which exhibit blood circulation based on high blood pressures.

Every polyploidization results in increased production of membrane materials with which the platelet becomes endowed. By shedding cytoplasmic fragments approximately 3000 platelets are set free from a 32c megakaryocyte, compared with only 16 nucleated thrombocytes by mitotic division. There is further evidence that the heterogeneity of platelets mostly depends on the different polyploidy classes of the megakaryocytes from which they are derived. Changes in the polyploidy pattern of megakaryocytes could therefore have consequences for hemostatic disorders in several human diseases, particularly in malignancy.

Key words

Polyploidy Megakaryocytes Megakaryocytopoiesis Malignancy 



haploid chromosome set (number of chromosomes actually counted)


haploid DNA content (measured by cytophotometry)




colchicine mitosis

G0, G1, G2, S

phases of the mitotic cycle


megakaryocyte colony stimulating factor(s)


thrombocytopoiesis stimulating factor(s)


megakaryocyte colony forming unit


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler CP, Beckhove P (1971) Postmortale DNA-Veränderungen im Herzmuskel. Beitr Pathol 142:306–320Google Scholar
  2. 2.
    Altmann H-W, Loeschke K, Schenck K (1966) Über das Karyogramm der menschlichen Leber unter normalen und pathologischen Bedingungen. Virchows Arch A 241:85–101Google Scholar
  3. 3.
    d'Amato F (1964) Endopolyploidy as a factor in plant tissue development. Caryologia 17:41–52Google Scholar
  4. 4.
    Ambrus JL, Ambrus CM (1976) Blood coagulation in neoplastic disease. In: Gastpar H (ed) Onkohämostaseologie. Schattauer, Stuttgart, pp 167–193Google Scholar
  5. 5.
    Arnold J (1883) Beobachtungen über Kerne und Kernteilungen in den Zellen des Knochenmarks. Arch Path Anat Physiol 93:1–38Google Scholar
  6. 6.
    Barlogie B (1984) Abnormal cellular DNA content as a marker of neoplasia. Eur J Cancer Clin Oncol 20:1123–1125Google Scholar
  7. 7.
    Barlogie B, Drewinko B, Schumann J, Göhde W, Dosik G, Latreille J, Johnston DA, Freireich EJ (1980) Cellular DNA content as a marker of neoplasia in man. Am J Med 69:195–203Google Scholar
  8. 8.
    Barz H, Kunze KD, Voss K, Simon H (1977) Altersabhängige Veränderungen morphologischer Parameter der Leberzellkerne in Biopsiematerial. Exp Pathol 14:55–64Google Scholar
  9. 9.
    Bauer H, Beermann W (1950/52) Die Polytänie der Riesenchromosomen. Chromosoma 4:630–648Google Scholar
  10. 10.
    Baxter JD, Funder JW (1979) Hormone receptors. N Engl J Med 301:1149–1161Google Scholar
  11. 11.
    Bedson SP, Johnston ME (1925) Further observations on platelet genesis. J Pathol Bact 28:101–114Google Scholar
  12. 12.
    Behnke O, Pedersen NT (1974) Ultrastructural aspects of megakaryocyte maturation and platelet release. In: Baldini MG, Ebbe S (eds) Platelets: production, function, transfusion and storage. Grune and Stratton, New York, pp 21–31Google Scholar
  13. 13.
    Bell A (1964) Diploid and endoreduplicated cells: measurements of DNA. Science 143:139–140Google Scholar
  14. 14.
    Bjelkenkrantz, Risberg B, Eneström S, Stal O (1982) Cytophotometric determination of nuclear size and DNA distribution in different hyperfunctioning thyroid lesions. Virchows Arch A 398:129–137Google Scholar
  15. 15.
    Bizzozero G (1869) Sul midollo delle ossa. Tipografia Italiana, NapoliGoogle Scholar
  16. 16.
    Böhm N, Moser B (1976) Reversible Hyperplasie und Hypertrophie der Mäuseleber unter funktioneller Belastung mit Phenobarbital. Beitr Pathol 157:283–300Google Scholar
  17. 17.
    Böhm N, Sandritter W (1975) DNA in human tumors: a cytophotometric study. Curr Top Pathol 60:151–219Google Scholar
  18. 18.
    Bond VP, Odartchenko N, Cottier H, Feinendegen LE, Gonkite EP (1962) The kinetics of the more mature erythrocytic precursors studied with tritiated thymidine. In: Jacobson L, Doyle M (eds) Erythropoiesis. Grune and Stratton, New York and London, pp 173–183Google Scholar
  19. 19.
    Brodsky WY, Uryvaeva IV (1977) Cell polyploidy: its relation to tissue growth and function. Int Rev Cytol 50:275–332Google Scholar
  20. 20.
    Bucher NLR (1963) Regeneration of mammalian liver. Int Rev Cytol 15:245–300Google Scholar
  21. 21.
    Bunting CH (1909) Blood platelet and megakaryocyte reactions in the rabbit. J Exp Med 11:541–552Google Scholar
  22. 22.
    Burstein SA (1986) Interleukin 3 promotes maturation of murine megakaryocytes in vitro. Bloods Cells 11:469–479Google Scholar
  23. 23.
    Burstein SA, Adamson JW, Thorning D, Harker LA (1979) Characteristics of murine megakaryocytic colonies in vitro. Blood 54:169–179Google Scholar
  24. 24.
    Burstein SA, Adamson JW, Harker LA (1980) Megakaryocytopoiesis in culture: modulation by choniergic mechanisms. J Cell Biol 103:201–208Google Scholar
  25. 25.
    Burstein SA, Adamson JW, Erb SK, Harker LA (1981) Megakaryopoiesis in the mouse: response to varying platelet demand. J Cell Physiol 109:333–341Google Scholar
  26. 26.
    Chatelain Ch, Burstein SA (1984) Fluorescence cytophotometric analysis of megakaryocytic ploidy in culture: studies of normal and thrombocytopenic mice. Blood 64:1193–1199Google Scholar
  27. 27.
    Chatelain Ch, Burstein SA, Harker LA (1983) Lithium enhancement of megakaryocytopoiesis in culture: mediation via accessory marrow cells. Blood 62:172–176Google Scholar
  28. 28.
    Coelho CP, Pfitzer P (1974) Cytophotometric estimation of nuclear DNA content of several tumors and their metastases. Arch Geschwulstforsch 43:217–238Google Scholar
  29. 29.
    Cogeshall RE, Jaksta BA, Swartz FJ (1970) A cytophotometric analysis of the DNA in the nucleus of the giant cell, R-2, in aplysia. Chromosoma 32:205–212Google Scholar
  30. 30.
    Cooney DP, Smith MA (1965) Maturation time of rabbit megakaryocytes. Br J Haematol 11:484–487Google Scholar
  31. 31.
    Cooper GW, Cooper B, Chang CY (1970) Demonstration of a circulating factor regulating blood platelet production using35-sulfate in rats and mice. Proc Soc Exp Biol Med 134:1223–1227Google Scholar
  32. 32.
    Craddock CG, Adams WS, Perry S, Lawrence JS (1955) The dynamics of platelet production as studied by a depletion technique in normal and irradiated dogs. J Lab Clin Med 45:906–919Google Scholar
  33. 33.
    Digernes V, Bolund L (1979) The ploidy classes of adult mouse liver cells. Virchows Arch B 32:1–10Google Scholar
  34. 34.
    Ebbe S, Stohlman F (1965) Megakaryocytopoiesis in the rat. Blood 26:20–35Google Scholar
  35. 35.
    Ebbe S, Stohlman F, Overcash J, Donovan J, Howard D (1968) Megakaryocyte size in thrombocytopenic and normal rats. Blood 32:383–392Google Scholar
  36. 36.
    Ebbe S, Stohlman F, Donovan J, Overcash J (1968) Megakaryocyte maturation rate in thrombocytopenic rats. Blood 32:787–795Google Scholar
  37. 37.
    Ebert L, Pfitzer P (1977) Nuclear DNA of myocardial cells in the periphery of infarctions and scars. Virchows Arch B 24:209–217Google Scholar
  38. 38.
    Evatt BL, Levin J (1969) Measurement of thrombopoiesis in rabbits using75selenomethionine. J Clin Invest 48:1615–1626Google Scholar
  39. 39.
    Evatt BL, Shreiner DP, Levin J (1974) Thrombopoietic activity of fractions of rabbit plasma: studies in rabbits and mice. J Lab Clin Med 83:364–371Google Scholar
  40. 40.
    Evatt B, Levin J, Algazy KM (1979) Partial purification of thrombopoietin from the plasma of thrombocytopenic rabbits. Blood 54:377–388Google Scholar
  41. 41.
    Evatt BL, Kellar KL, Ramsey RB (1986) Thrombopoietin: past, present, future. Megakaryocyte development and function. Alan R. Liss, New York, pp 143–155Google Scholar
  42. 42.
    Feinendegen LE, Odartchenko N, Cotties H, Bond VP (1962) Kinetics of megakaryocyte proliferation. Proc Soc Exper Biol Med 111:177–182Google Scholar
  43. 43.
    Freedman MH, Mc Donald TP, Saunders EF (1981) Differentiation of murine marrow megakaryocyte progenitors (CFUm): humoral control in vitro. Cell Tiss Kinet 14:53–58Google Scholar
  44. 44.
    Gamba-Vitalo Ch, Gallicchio VS, Watts TD, Chen MG (1983) Lithium stimulated in vitro megakaryocytopoiesis. Exp hematol 11:382–388Google Scholar
  45. 45.
    Garcia AM (1964) Feulgen-DNA values in megakaryocytes. J Cell Biol 20:342–345Google Scholar
  46. 46.
    Geissler D, Peschel CH, Konwalinka G (1983) Neue Aspekte der Megakaryopoese. Wien Klin Wochenschr 95:685–688Google Scholar
  47. 47.
    Geissler D, Peschel CH, Boyd J, Konwalinka G (1983) Proliferation von megakaryozytären Vorläuferzellen (CFU-M) in einem Mikroagarkultursystem. Wien Klin Wochenschr 96:8–11Google Scholar
  48. 48.
    Geissler D, Konwalinka G, Peschel C, Grünewald K, Odavic R, Braunsteiner H (1985) A regulatory role of activated T-lymphocytes on human megakaryocytopoiesis in vitro. Br J Haematol 60:233–238Google Scholar
  49. 49.
    Geitler L (1953) Endomitose and endomitotische Polyploidisierung. Protoplasmatologica 6c:1–89Google Scholar
  50. 50.
    Georgii A, Vykoupil KF, Thiele J (1980) Chronic megakaryocytic-granulocytic myelosis — CMGM. Virchows Arch A 389:253–268Google Scholar
  51. 51.
    Gerzeli G, Barni S (1976) Changes in liver cell ploidy of young rats following isoprenaline treatment. Cell Tiss Kinet 9:267–272Google Scholar
  52. 52.
    Gewirtz AM (1986) Human megakaryocytopoiesis. Semin Hematol 23:27–42Google Scholar
  53. 53.
    Gewirtz AM, Keefer M, Bien R, Mangan KF (1986) Cellular regulation of human megakaryocytopoiesis in vitro. Megakaryocyte development and function. Alan R. Liss, New York, pp 129–135Google Scholar
  54. 54.
    Gilbert P, Pfitzer P (1977) Facultative polyploidy in endocrine tissues. Virchows Arch B 25:233–242Google Scholar
  55. 55.
    Gottschalk W (1976) Die Bedeutung der Polyploidie für die Evolution der Pflanzen. Gustav Fischer, Stuttgart, pp 1–4, 380–385Google Scholar
  56. 56.
    Gräbner W, Pfitzer P (1974) Number of nuclei in isolated myocardial cells of pigs. Virchows Arch B 15:279–294Google Scholar
  57. 57.
    Haemmerli G (1970) Cytophotometrische und cytogenetische Untersuchungen an knotigen Veränderungen der menschlichen Schilddrüse. Schweiz Med Wochenschr 100:633–641Google Scholar
  58. 58.
    Harker LA (1968) Megakaryocyte quantitation. J Clin Invest 47:452–457Google Scholar
  59. 59.
    Harker LA (1968) Kinetics of thrombopoiesis. J Clin Invest 47:458–465Google Scholar
  60. 60.
    Harker LA (1970) Regulation of thrombopoiesis. Am J Physiol 218:1376–1380Google Scholar
  61. 61.
    Hattori T, Helpap B, Gedigk P (1984) Suppression and acceleration of DNA synthesis in megakaryocytes after partial hepatectomy. Virchows Arch B 46:127–133Google Scholar
  62. 62.
    Heide W (1982) Die Polyploidie der Zellkerne in Leber, Schilddrüse und Samenblasenepithel des Menschen während der 9. und 10. Lebensdekade und sie beeinflussende Faktoren. Dissertation, Universität DüsseldorfGoogle Scholar
  63. 63.
    Heiden v d FL, James J (1975) Polyploidy in the human myometrium. Z Mikroskop Anat Forsch 89:18–26Google Scholar
  64. 64.
    Heidenhain M (1894) Neue Untersuchungen über die Zentralkörper und ihre Beziehungen zum Kern- und Zellenprotoplasma. Arch Mikroskop Anat 43:423–758Google Scholar
  65. 65.
    Herreros B, Gianelli F (1967) Spatial distribution of old and new chromatid sub-units and frequency of chromatid exchanges in induced human lymphocyte endoreduplications. Nature 216:286–288Google Scholar
  66. 66.
    Hiddemann W, Wörmann B, Göhde W, Büchner T (1986) DNA aneuploidies in adult patients with acute myeloid leukemia. Cancer 57:2146–2152Google Scholar
  67. 67.
    Hoffman R, Mazur E, Bruno E, Floyd V (1981) Assay of an activity in the serum of patients with disorders of thrombopoiesis that stimulates formation of megakaryocyte colonies. N Engl J Med 305:533–538Google Scholar
  68. 68.
    Hoffman R, Yang HH, Bruno E, Straneva JE (1985) Purification and partial characterization of a megakaryocyte colony-stimulating factor from human plasma. J Clin Invest 75:1174–1182Google Scholar
  69. 69.
    Jackson CW, Brown KL, Sommerville BC, Lyles SA, Look T (1984) Two color flow cytometric measurement of DNA distributions of rat megakaryocytes in unfixed unfractionated marrow cell suspension. Blood 63:768–778Google Scholar
  70. 70.
    Jackson CW, Steward SA, Brown LK, Lock AT (1986) Inverse relationship between megakaryocyte buoyant density and maturity. Br J Haematol 64:33–43Google Scholar
  71. 71.
    Japa J (1943) A study of the morphology and development of the megakaryocytes. Br J Exp Pathol 24:73–80Google Scholar
  72. 72.
    Johnson LI, Chan PC, Lobue J, Monette FC, Gordon AS (1967) Cell cycle analysis of rat lymphocytes cultured with phytohemagglutinin in diffusion chambers. Exp Cell Res 47:201–208Google Scholar
  73. 73.
    Kanz L, Löhr GW, Fauser AA (1986) Human megakaryocytic colony formation is supported by lymphokines from isolated T-lymphocyte subpopulations. Megakaryocyte development and function. Alan R. Riss, New YorkGoogle Scholar
  74. 74.
    Karpatkin S (1969) Heterogeneity of human platelets. I. Metabolic and kinetic evidence suggestive of young and old platelets. J Clin Invest 48:1073–1082Google Scholar
  75. 75.
    Karpatkin S (1969) Heterogeneity of human platelets. II. Functional evidence suggestive of young and old platelets. J Clin Invest 48:1083–1087Google Scholar
  76. 76.
    Kawakita M, Enomoto K, Katayama N, Kishimoto S, Miyake T (1981) Thrombopoiesis and megakaryocyte colony-stimulating factors in the urine of patients with idiopathic thrombocytopenic purpura. Br J Haematol 48:609–615Google Scholar
  77. 77.
    Kawakita M, Ogawa M, Goldwasser E, Miyake T (1983) Characterization of human megakaryocyte colony-stimulating factor in the urinary extracts from patients with aplastic anemia and idiopathic thrombocytopenic purpura. Blood 61:556–560Google Scholar
  78. 78.
    Kawakita M, Yamamoto S, Asou N, Ishii M, Sakaguchi M, Takatsuki K (1986) Human urinary megakaryocyte colony-stimulating factor in thrombopoietic disorders. Br J Haematol 62:715–722Google Scholar
  79. 79.
    Kinet-Denoel C, Bassleer R, Andrien JM, Paulus JM (1971) Ploidy histograms in ITP. In: Paulus JM (ed) Platelet kinetics. North-Holland, Amsterdam-London, pp 280–284Google Scholar
  80. 80.
    Korinth E (1962) Untersuchungen über die quantitativen morphologischen und funktionellen Veränderungen der Thrombozyten bei chronischen Lebererkrankungen. Acta Hepatogastroenterol (Stuttg) 9:65–73Google Scholar
  81. 81.
    Kuckuck H, Kobabe G, Wenzel G (1985) Grundzüge der Pflanzenzüchtung. de Gruyter, Berlin-New York, pp 100–113Google Scholar
  82. 82.
    Kuhn H, Pfitzer P, Stoepel K (1974) DNA content and DNA synthesis in the myocardium of rats after induced renal hypertension. Cardiovasc Res 8:86–91Google Scholar
  83. 83.
    Lagerlöf B (1972) Cytophotometric study of megakaryocyte ploidy in polycythaemia vera and chronic granulocytic leukaemia. Acta Cytol 16:240–244Google Scholar
  84. 84.
    Langes K, Arnold G, Pfitzer P (1983) Postnatal DNA syntheses and mitoses in hearts of dwarf pigs. J Mol Cell Cardiol 15:831–844Google Scholar
  85. 85.
    Lasek R, Dower W (1971) Aplysia californica: analysis of nuclear DNA in individual nuclei of giant neurons. Science 172:278–280Google Scholar
  86. 86.
    Leval de M (1964) Dosages cytophotometriques d'ADN dans des megakaryocytes normaux de cobaye. Compt Rend Soc Biol 158:2198–2201Google Scholar
  87. 87.
    Leval de M (1968) Etude cytochimique quantitative des acides desoxyribonucleiques au cours de la maturation megakaryocytaire. Nouv Rev Fr Hematol 8:392–394Google Scholar
  88. 88.
    Levan A (1938) The effect of colchcine on root mitosis. Hereditas (Lund) 24:471–491Google Scholar
  89. 89.
    Levan A, Haushka TS (1953) Endomitotic reduplication mechanisms in ascites tumors of the mouse. J Natl Cancer Inst 14:1–20Google Scholar
  90. 90.
    Levin J, Evatt BL (1979) Humoral control of thrombocytopoiesis. Blood Cells 5:105–121Google Scholar
  91. 91.
    Levin J, Levin FC, Penington DG, Metcalf D (1981) Measurement of ploidy distribution in megakaryocyte colonies obtained from culture: with studies of the effects of thrombocytopenia. Blood 57:287–297Google Scholar
  92. 92.
    Levin J, Levin FC, Hull DF, Penington DG (1982) The effects of thrombopoietin on megakaryocyte CFC, megakaryocytes, and thrombopoiesis: with studies of ploidy and platelet size. Blood 60:989–998Google Scholar
  93. 93.
    Levine RF (1980) Isolation and characterization of normal human megakaryocytes. Br J Haematol 45:487–497Google Scholar
  94. 94.
    Levine RF, Bunn PA, Hazzard KC, Schlam ML (1980) Flow cytometric analysis of megakaryocyte ploidy. Comparison with Feulgen microdensitometry and discovery that 8N is the predominant ploidy class in guinea pig and monkey marrow. Blood 56:210–217Google Scholar
  95. 95.
    Levine RF, Hazzard KC, Lamberg JD (1982) The significance of megakaryocyte size. Blood 60:1122–1133Google Scholar
  96. 96.
    Lin MS, Wolden DB (1974) Endoreduplication induced by hydroxylamine sulfate in Zea mays root tip nuclei. Exp Cell Res 86:47–52Google Scholar
  97. 97.
    Long W, Williams N, Ebbe S (1982) Immature megakaryocytes in the mouse: physiological characteristics, cell cycle status, and in vitro responsiveness to thrombopoietic stimulatory factor. Blood 59:569–575Google Scholar
  98. 98.
    Martin JF, Trowbridge EA, Salmon G, Plumb J (1983) The biological significance of platelet volume: its relationship to bleeding time, platelet thromboxane B2 production and megakaryocyte nuclear DNA concentration. Thromb Res 32:443–460Google Scholar
  99. 99.
    Matter M, Hartmann JR, Kautz J, de Marsh QB, Finch CA (1960) A study of thrombopoiesis in induced acute thrombocytopenia. Blood 15:174–185Google Scholar
  100. 100.
    Mayer M, Sperling H, Schaefer J, Queisser W (1978) Megakaryocyte polyploidization in May-Hegglin anomaly. Acta Haematol 60:45–52Google Scholar
  101. 101.
    Mazur EM, Hoffmann R, Chasis J, Marchesi S, Bruno E (1981) Immunofluorescent identification of human megakaryocyte colonies using an antiplatelet glycoprotein antiserum. Blood 57:277–286Google Scholar
  102. 102.
    Mc Donald TP (1973) The hem-agglutination-inhibition assay for thrombopoietin. Blood 41:219–233Google Scholar
  103. 103.
    Mc Donald TP, Clift R, Lange RD, Nolan C, Tribby IIE, Barlow GH (1975) Thrombopoietin production by human embryonic kidney cells in culture. J Lab Clin Med 85:59–66Google Scholar
  104. 104.
    Mc Donald TP, Clift R, Jones JB (1976) Canine cyclic hematopoiesis: platelet size and thrombopoietin level in relation to platelet count. Proc Soc Exp Biol Med 153:424–428Google Scholar
  105. 105.
    Mc Leod DL, Shreeve MM, Axelrad AA (1976) Induction of megakaryocyte colonies with platelet formation in vitro. Nature 261:492–494Google Scholar
  106. 106.
    Meissner WA, Warren S (1969) Tumors of the thyroid gland. Armed Forces Institute of Pathology, Bethesda, MarylandGoogle Scholar
  107. 107.
    Metcalf D, Mc Donald HR, Ordartchenko N, Sordat B (1975) Growth of mouse megakaryocytic colonies in vitro. Proc Natl Acad Sci USA 72:1744–1748Google Scholar
  108. 108.
    Mirakjan VO, Rumyantsev PP (1968) DNA synthesis in postnatal histogenesis of myocard and under its infarction, hypertrophy and regeneration. Academy of Science. UDSSR Verlag der Wissenschaft, Leningrader Abt 10, pp 964–980Google Scholar
  109. 109.
    Mittwoch A, Lele K, Webster W (1965) Desoxyribonucleic acid synthesis in cultured human cells and its bearing on the concepts of endoreduplication and polyploidy. Nature 208:242–244Google Scholar
  110. 110.
    Mohr W, Kesenheimer M, Beneke G (1974) Age-dependent polyploidization of the nuclei in human seminal vesicle epithelial cells. Beitr Pathol 151:331–343Google Scholar
  111. 111.
    Müller H-A, Diemer H, v Kietzell R (1973) Polymorphe Großkerne im menschlichen Samenblasenepithel. Virchows Arch B 12:281–284Google Scholar
  112. 112.
    Nagl W (1973) The mitotic and endomitotic nuclear cycle in Allium carinatum. IV.3H-uridine incorporation. Chromosoma 44:203–212Google Scholar
  113. 113.
    Nagl W (1978) Endopolyploidy and polyteny in differentiation and evolution. North-Holland, Amsterdam New York Oxford, pp 101ffGoogle Scholar
  114. 114.
    Nakeff A, Roozendaal KJ (1975) Thrombopoietin activity in mice following immune-induced thrombocytopenia. Acta Haematol 54:340–344Google Scholar
  115. 115.
    Noltemeyer M, Böhm N (1978) Altersabhängigkeit der Phenobarbital-induzierten reversiblen Polyploidisierung der Hepatocyten der Hausmaus. Verh Dtsch Ges Pathol 62:470Google Scholar
  116. 116.
    Nomura T, Onozawa Y, Tanove K, Nagasawa T, Nakajima T, Kenichi K, Yoda Y, Kudo H (1977) Ploidy and size of megakaryocytes in patients with idiopathic thrombocytopenic purpura. Acta Haematol Jap 40:133–140Google Scholar
  117. 117.
    Nomura T, Kuriya S, Dan K (1983) Characteristics of megakaryocytes in relation to platelet production in idiopathic thrombocytopenic purpura. Acta Haematol Jap 46:1441–1550Google Scholar
  118. 118.
    Odell TT, Jackson CW (1968b) Polyploidy and maturation of rat megakaryocytes. Blood 32:102–110Google Scholar
  119. 119.
    Odell TT, Murphy JR (1974) Effects of degree of thrombocytopenia on thrombocytopoietic response. Blood 44:147–156Google Scholar
  120. 120.
    Odell TT, Shelton C (1979) Increasing stimulation of megakaryocytopoiesis with decreasing platelet count. Proc Soc Exp Biol Med 161:531–533Google Scholar
  121. 121.
    Odell TT, Mc Donald TP, Asano M (1962) Response of rat megakaryocytes and platelets to bleeding. Acta Haematol 27:171–179Google Scholar
  122. 122.
    Odell TT, Jackson CW, Reiter RS (1967) Depression of the megakaryocyte-platelet system in rats by transfusion of platelets. Acta Haematol 38:34–42Google Scholar
  123. 123.
    Odell TT, Jackson CW, Reiter RS (1968) Generation cycle of rat megakaryocytes. Exp Cell Res 53:321–328Google Scholar
  124. 124.
    Odell TT, Jackson CW, Friday TJ, Charsha DE (1969) Effects of thrombocytopenia on megakaryocytopoiesis. Br J Haematol 17:91–101Google Scholar
  125. 125.
    Odell TT, Murphy JR, Jackson CW (1976) Stimulation of megakaryocytopoiesis by acute thrombocytopenia in rats. Blood 48:765–775Google Scholar
  126. 126.
    Odell TT, Mc Donald TP, Shelton C, Clift R (1979) Stimulation of mouse megakaryocyte endomitosis by plasma from thrombocytopenic rats. Proc Soc Exp Biol Med 160:263–265Google Scholar
  127. 127.
    Palitti F, Rizzoni M (1972) Experimental evolution of cell populations of Chinese hamster treated with colchicine: induction of high degree of ploidy and a phase-specific lethal effect. Int J Cancer 9:510–523Google Scholar
  128. 128.
    Paulini K, Sonntag W (1977) Polyploidisierung — ein Altersphänomen? Acta Gerontol 7:521–527Google Scholar
  129. 129.
    Paulini K, Beneke G, Kulka R (1970) Cytophotometric DNA determination after unilateral nephrectomy in dependence of age. Beitr Pathol 141:81–88Google Scholar
  130. 130.
    Penington DG (1969) Assessment of platelet production with75Selonomethionine. Br Med J 4:782–784Google Scholar
  131. 131.
    Penington DG (1971b) Megakaryocyte measurements in thrombocytosis. In: Paulus JM (ed) Platelet kinetics. North-Holland, Amsterdam London, pp 311–313Google Scholar
  132. 132.
    Penington DG (1979) The cellular biology of megakaryocytes. Blood Cells 5:5–10Google Scholar
  133. 133.
    Penington DG (1979) Megakaryocyte colony culture using a liver cell conditioned medium. Blood Cells 5:13–23Google Scholar
  134. 134.
    Penington DG, Olsen TE (1970) Megakaryocytes in states of altered platelet production; cell numbers, size, and DNA content. Br J Haematol 18:447–463Google Scholar
  135. 135.
    Penington DG, Streatfield K (1975) Heterogeneity of megakaryocytes and platelets. Ser Haematol 8:22–48Google Scholar
  136. 136.
    Penington DG, Weste SM (1971) Increased platelet destruction. In: Paulus JM (ed) Platelet kinetics. North-Holland, Amsterdam London, pp 284–287Google Scholar
  137. 137.
    Penington DG, Lee NYT, Roxburgh AE, McGready JE (1976) Platelet density and size: the interpretation of heterogeneity. Br J Haematol 34:365–376Google Scholar
  138. 138.
    Penington DG, Streatfield K, Roxburgh AE (1976) Megakaryocytes and the heterogeneity of circulating platelets. Br J Haematol 34:639–653Google Scholar
  139. 139.
    Petersen RO, Baserga R (1965) Nucleic acid and protein synthesis in cardial muscle of growing and adult mice. Exp Cell Res 40:340–352Google Scholar
  140. 140.
    Pfitzer P (1971a) Nuclear DNA content of human myocardial cells. Curr Top Pathol 54:125–168Google Scholar
  141. 141.
    Pfitzer P (1971b) Nuclear DNA content of myocardial cells of the turkey. Virchows Arch B 8:175–178Google Scholar
  142. 142.
    Pfitzer P (1972) Polyploide Zellkerne im Herzmuskel von Affen. Virchows Arch B 10:268–274Google Scholar
  143. 143.
    Pfitzer P (1980) Amitosis: a historical misinterpretation? Pathol Res Pract 167:292–300Google Scholar
  144. 144.
    Pfitzer P (1984) Die fakultative Polyploidie der Thyreocyten — eine Ursache der Kernpolymorphie. Verh Dtsch Ges Pathol 68:495Google Scholar
  145. 145.
    Pfitzer P, Capurso A (1970) Der DNS-Gehalt der Zellkerne im Herzohr des Menschen. Virchows Arch B 5:254–267Google Scholar
  146. 146.
    Pfitzer P, Kuhn H (1970) DNS-Gehalt und DNS-Synthese in den Zellkernen normaler und hypertrophierter Rattenherzen. Verh Dtsch Ges Pathol 54:673Google Scholar
  147. 147.
    Queisser U, Queisser W, Spiertz B (1971) Polyploidization of megakaryocytes in normal humans, in patients with idiopathic thrombocytopenia and with pernicious anaemia. Br J Haematol 20:489–500Google Scholar
  148. 148.
    Queisser W, Queisser U, Ansmann M, Brunner G, Hoelzer D, Heimpel H (1974) Megakaryocyte polyploidization in acute leukaemia and preleukaemia. Br J Haematol 28:261–270Google Scholar
  149. 149.
    Queisser W, Weidenauer G, Queisser U, Kempgens U, Müller U (1976) Megakaryocyte polyloidization in myeloproliferative disorders. Blut 32:13–20Google Scholar
  150. 150.
    Quesenberry PJ, Ihle JN, Mc Grath E (1985) The effect of interleukin 3 and GM-CSA-2 on megakaryocyte and myeloid clonal colony formation. Blood 65:214–217Google Scholar
  151. 151.
    Rabellino E (1984a) Biology of human megakaryocytes: recent developments. Prog Hemost Thromb 151–163Google Scholar
  152. 152.
    Rabellino EM, Levene RB, Nachman RL, Leung L (1984b) Human megakaryocytes III. Characterization in myeloproliferative disorders. Blood 63:615–622Google Scholar
  153. 153.
    Rieger R, Michaelis A, Green MM (1976) Glossary of genetics and cytogenetics. Springer, Berlin Heidelberg New York, pp 434–435Google Scholar
  154. 154.
    Ries E (1939) Die Bedeutung spezifischer Mitosegifte für allgemeine biologische Probleme. Naturwiss 27:505–515Google Scholar
  155. 155.
    Rizzoni M, Palitti F (1973) Regulatory mechanism of cell division. I. Colchicine-induced endoreduplication. Exp Cell Res 77:450–458Google Scholar
  156. 156.
    Rosenberg B, Pfitzer P (1983) Ploidy in the hearts of elderly patients. Virchows Arch B 42:19–24Google Scholar
  157. 157.
    Rothlin R, Undritz E (1946) Zur Megakaryozytenbildung durch Polyploidie. Arch Julius Klaus Stift 21:283–287Google Scholar
  158. 158.
    Safier S, Cottier H, Cronkite EP, Jansen CR, Air KR, Wagner HP (1967) Studies on lymphocytes. Evidence showing different generation times for cytologically different lymphoid cell lines in the thoracic duct of the calf. Blood 30:301–310Google Scholar
  159. 159.
    Sandritter W, Scomazzoni G (1964) Desoxyribonucleic acid content (Feulgen photometry) and dry weight (interference microscopy) of normal and hypertrophical heart muscle fibres. Nature 202:100–101Google Scholar
  160. 160.
    Sarto GE, Stubblefield PA, Therman E (1982) Endomitosis in human trophoblast. Hum Genet 62:228–232Google Scholar
  161. 161.
    Scharf RE, Heisig S, Schramm W, Schneider W (1983) Thrombozytopenie bei Leberzirrhose. Klin Wochenschr 61:703–708Google Scholar
  162. 162.
    Schmid G, Pfitzer P (1985) Mitoses and binucleated cells in perinatal human hearts. Virchows Arch B 48:59–67Google Scholar
  163. 163.
    Schneider W, Scharf RE, Hagen-Aukamp Ch, Winkelmann M (1983) Evolution der Hämostase: Megakaryozyten-Blutplättchen-System. Arzneim Forsch 33 (II) 9a:1351–1354Google Scholar
  164. 164.
    Schulte-Hermann R, Deerberg F, Landgraf H (1976) Changes in size, DNA content and nuclear ploidy of rat liver produced by the environmental microflora. Virchows Arch B 20:71–76Google Scholar
  165. 165.
    Schultze B, Gerhard H, Schump E, Maurer W (1973) Autoradiographische Untersuchung über die Proliferation der Hepatocyten bei der Regeneration der CCl4-Leber der Maus. Virchows Arch B 14:329–343Google Scholar
  166. 166.
    Schwarzacher HG, Schnedl W (1965) Endoreduplication in human fibroblast cultures. Cytogenetics 4:1–18Google Scholar
  167. 167.
    Schwarzacher HG, Schnedl W (1966) Position of labelled chromatids in diplochromosomes of endo-reduplicated cells after uptake of tritiated thymidine. Nature 209:107–108Google Scholar
  168. 168.
    Shima A, Suguhara T (1976) Age-dependent ploidy class changes in mouse hepatocyte nuclei as revealed by Feulgen-DNA-cytofluoro-metry. Exp Gerontol 11:193–203Google Scholar
  169. 169.
    Shreiner DP, Levin J (1970) Detection of thrombopoietic activity in plasma by stimulation of suppressed thrombopoiesis. J Clin Invest 49:1709–1713Google Scholar
  170. 170.
    Siemensma NP, Bathal PS, Penington PG (1975) The effect of massive liver resection on platelet kinetics in the rat. J Lab Clin Med 86:817–833Google Scholar
  171. 171.
    Sourd le L, Pagniez P (1973) Recherche sur l'origine des plaquettes. Comptes Rendus des Séances de la Société de Biologie 74:580–583, 788–790Google Scholar
  172. 172.
    Sparrow RL, Williams N (1986) Megakaryocyte colony stimulating factor: its identity to interleukin-3. Megakaryocyte development and function. Alan R. Liss, New York, pp 123–129Google Scholar
  173. 173.
    Stöcker E, Schultze B, Heine W-D, Liebscher H (1972) Wachstum und Regeneration in parenchymatösen Organen der Ratte. Audioradiographische Untersuchungen mit 3 H-Thymidin. Z Zellforsch Mikrosk Anat 125:306–331Google Scholar
  174. 174.
    Stöcker E, Teubner G, Rosenbusch G (1978) Die DNS-Synthese als Funktion des Alters in Leber und Niere der Ratte. Verh Dtsch Ges Pathol 48:295–299Google Scholar
  175. 175.
    Straßburger E (1910) Chromosomenzahl. Flora 100:398–446Google Scholar
  176. 176.
    Swartz FJ (1956) The development in the human liver of multiple desoxyribose nucleic acid (DNA) classes and relationship to the age of the individual. Chromosoma 8:53–72Google Scholar
  177. 177.
    Therman E, Sarto GE, Buchler DA (1983) The structure and origin of giant nuclei in human cancer cells. Cancer Genet Cytogenet 9:9–18Google Scholar
  178. 178.
    Trowbridge EA, Martin JF (1984) An analysis of the platelet and polyploid megakaryocyte response to acute thrombocytopenia and its biological implications. Clin Phys Physiol Meas 5:263–277Google Scholar
  179. 179.
    Tschermak-Woess (1971) Handb Allg Pathol 2 Part II No 1:569ffGoogle Scholar
  180. 180.
    Uryvaeva IV (1979) Polyploidizing mitoses and the biological meaning of polyploidy in liver cells. Tsitologiya 21:1427–1437Google Scholar
  181. 181.
    Vainschenker W, Bouguet J, Gauchard J, Breton-Gorius J (1979) Megakaryocyte colony formation from human bone marrow precursors. Blood 54:940–945Google Scholar
  182. 182.
    Voogt de HJ, Rathert P, Beyer-Boon ME (1979) Praxis der Urincytologie. Springer, Berlin Heidelberg New York, pp 16ffGoogle Scholar
  183. 183.
    Weicker H, Nöller HG (1951) Morphologische Beobachtungen über den Vermehrungs- und Kernteilungsmechanismus der Knochenmarkriesenzellen. Klin Wochenschr 29:184–190Google Scholar
  184. 184.
    Wernecke MC (1985) Fakultative Polyploidie in operierten Schilddrüsen. Dissertation, Universität DüsseldorfGoogle Scholar
  185. 185.
    Werner H (1985) Fakultative Polyploidie der Schilddrüse; ein Grund für Polymorphie. Dissertation, Universität DüsseldorfGoogle Scholar
  186. 186.
    Williams N, Jackson H (1978) Regulation of the proliferation of murine megakaryocyte progenitor cells by cell cycle. Blood 52:163–170Google Scholar
  187. 187.
    Williams N, Levine RF (1982) Annotation: the origin, development and regulation of megakaryocytes. Br J Haematol 52:173–180Google Scholar
  188. 188.
    Williams N, Mc Donald TP, Rabellino EM (1979) Maturation and regulation of megakaryocytopoiesis. Blood Cells 5:43–55Google Scholar
  189. 189.
    Williams N, Jackson H, Ralph P, Nakoinz I (1981) Cell interactions influencing murine marrow megakaryopoiesis: nature of the potentiator cell in bone marrow. Blood 57:157–163Google Scholar
  190. 190.
    Williams N, Jackson H, Iscove NN, Dukes PP (1984) The role of erythropoietin, thrombopietic stimulating factor and myeloid colony-stimulating factors on murine megakaryocyte colony formation. Exp Hematol 12:734–740Google Scholar
  191. 191.
    Winkelmann M, Schmitz G, Aul C, Scharf RE, Pfitzer P, Schneider W (1983) Reifestadieneinteilung und Polyploidie der Megakaryozyten bei Patienten mit Leberzirrhose. Verh Dtsch Ges Inn Med 89:988–990Google Scholar
  192. 192.
    Winkelmann M, Stöckler J, Grassmuck J, Pfitzer P, Schneider W (1984) Ploidy pattern of megakaryocytes in patients with metastatic tumors with and without paraneoplastic thrombosis and in controls. Haemostasis 14:501–507Google Scholar
  193. 193.
    Winkelmann M, Lohmeyer M, Hochkirchen R, Boland D, Scharf RE, Pfitzer P, Schneider W (1986) Idiopathic thrombocytopenic purpura; follow-up of 105 patients with ITP from 1974–1984 with respect to DNA content of megakaryocytes. Haemostasis 16 [Suppl 5]:59–60Google Scholar
  194. 194.
    Winkelmann M, Sogalla Ch, Pfitzer P, Schneider W (1986) Ploidy patterns of metakaryocytes in patients with metastatic tumors and patients with limited cancer in comparson to control-study groups — a direct correlation between tumor volume and megakaryocyte DNA content. Haemostasis 16 [Suppl 5]:82Google Scholar
  195. 195.
    Winkelmann M, Dorr U, Pfitzer P, Schneider W (1986) Is lower ploidy of megakaryocytes another reason for uremic thrombocytopathy? Klin Wochenschr 64:540–544Google Scholar
  196. 196.
    Winkler H (1916) Über die experimentelle Erzeugung von Pflanzen mit abweichenden Chromosomenzahlen. Z Bot 8:417–531Google Scholar
  197. 197.
    Witte S (1955) Megakaryocyten und Thrombocytopoese bei der experimentellen thrombocytopenischen Purpura. Acta Haematol 14:215–230Google Scholar
  198. 198.
    Wittstock G, Kirchner J (1970) Biomorphose der Samenblasen unter besonderer Berücksichtigung der chronischen Spermatocystitis. Virchows Arch A 351:12–20Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. Winkelmann
    • 1
  • P. Pfitzer
    • 2
  • W. Schneider
    • 1
  1. 1.Abteilung Hämatologie, Onkologie und Klinische ImmunologieUniversität DüsseldorfGermany
  2. 2.Abteilung ZytopathologieUniversität DüsseldorfGermany

Personalised recommendations