Advertisement

Journal of Molecular Evolution

, Volume 11, Issue 3, pp 259–266 | Cite as

Phytanyl-glycerol ethers and squalenes in the archaebacteriumMethanobacterium thermoautotrophicum

  • T. G. Tornabene
  • R. S. Wolfe
  • W. E. Balch
  • G. Holzer
  • G. E. Fox
  • J. Oro
Article

Summary

The lipids of a thermophilic chemolithotroph,Metbanobacterium thermoautotropbicum, have been analyzed by chromatographic techniques and identified by infrared spectrometry and combined gas chromatography-mass spectrometry. Of the total chloroform soluble lipids 79% and 21% are polar and non-polar lipids, respectively. The major components of the polar lipids are dialkyl ethers of glycerol or its derivatives. The nature of the glycerol ether alkyl groups was found to be that of the saturated tetraisoprenoid hydrocarbon phytane. The non-polar lipids of the chloroform soluble fraction consist principally of three series of C20, C25 and C30 acyclic isoprenoid hydrocarbons, the major components being squalene and a continuous range of hydrosqualene derivatives, from dihydrosqualene up to and including decahydrosqualene. These data establish thatM. tbermoautotropbicum contains predominantly non-sapo-nifiable lipids as doHalobacterium, Halococcus, Sulfolobus andTbermoplasma. In particular, the composition of the chloroform soluble lipids ofM. tbermoautotropbicum is quite similar to that ofHalobacterium cutirubrum. The results strongly support the recent proposal, based on 16S rRNA sequence homologies, that the extreme halophiles and methanogens share a common ancestor. In addition, it is pointed out that the occurrence of phytane and related polyisoprenoid compounds in ancient sediments can no longer be considered unequivocally as indicative of past photosynthetic activity. Finally, speculations are made concerning the possible role of and evolutionary significance of the presence of squalene and hydrosqualenes in these organisms. To our knowledge this is the first report of squalene and hydrosqualenes in a strictly anaerobic microorganism.

Key words

Ether lipids Glycerol ethers Squalene Hydrosqualenes Isoprenoids Phytane Archaebacteria Methanogens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R.J.L. (1940). Biochem. J.34, 858–865Google Scholar
  2. Anderson, R., Kates, M., Baedecker, M.J., Kaplan, I.R., Ackman, R.G. (1977). Geochim. Cosmochim. Acta41, 1381–1390Google Scholar
  3. Bertsch. L.E., Bonsen, P.P.M., Konberg, A. (1969). J. Bacteriol.98, 75–81Google Scholar
  4. Bligh, E.G., Dyer, W.J. (1959). Can. J. Physiol.37, 911–917Google Scholar
  5. Bloch, K. (1976). In: Reflections on biochemistry in honour of severo ochoa (Kornberg, A., Horecker, B.L., Cornudella, L. and Oro, J., eds.) pp. 143–150. Oxford: Pergamon PressGoogle Scholar
  6. Brock, T.D., Brock, K.M., Belly, R.T., Weiss, R.L. (1972). Arch. Microbiol.84, 54–68Google Scholar
  7. Cheah, K.S. (1969). Biochim. Biophys. Acta.180, 320–333Google Scholar
  8. Darland, G., Brock, T., Samaonoff, W., Conti, S.F. (1970). Science170, 1416–1418Google Scholar
  9. Didyk, B.M., Somoneit, B.R.T., Brassel, S.D., Eglinton, G. (1978). Nature272, 216–222Google Scholar
  10. Dubois, M., Giles, K.A., Hamilton, J.K., Rebers, A., Smith, F. (1956). Anal. Chem.28, 350–356Google Scholar
  11. Fox, G.E., Magrum, L.J., Balch, W.E., Wolfe, R.S., Woese, C.R. (1977). Proc. Nat. Acad. Sci. U.S.74, 4537–4541Google Scholar
  12. Kandler, O., Hippe, H. (1977). Arch. Microbiol.113, 57–60Google Scholar
  13. Kates, M. (1964). J. Lipid Res.5, 132–135Google Scholar
  14. Kates, M. In: Ether lipids, chemistry and biology. (1972). pp. 351–398. New York: Academic PressGoogle Scholar
  15. Kates, M., Yengoyan, L.S., Sastry, P.S. (1965). Biochim. Biophys. Acta.98, 252–268Google Scholar
  16. Kates, M., Palameta, B., Perry, M.P., Adams, G.A. (1967). Biochim. Biophys. Acta.137, 213–216Google Scholar
  17. Langworthy, T.A. (1977). Biochim. Biophys. Acta.487, 37–50Google Scholar
  18. Langworthy, T.A., Smith, P.F., Mayberry, W.R. (1972). J. Bacteriol.112, 1193–1200Google Scholar
  19. Langworthy, T.A., Mayberry, W.R., Smith, P.F. (1974). J. Bacteriol.119, 106–116Google Scholar
  20. Langworthy, T.A., Mayberry, W.R., Smith, P.G. (1976). Biochim. Biophys. Acta.431, 550–569Google Scholar
  21. Lanyi, J.K. (1968). Arch. Biochem. Biophys.128, 716–724Google Scholar
  22. Lanyi, J.K. (1969). J. Biol. Chem.244, 2864–2869Google Scholar
  23. Magrum, O.J., Leuhrsen, K.W., Woese, C.R. (1978). J. Mol. Evol.11, 1–8Google Scholar
  24. Marinetti, G.V. (1962). J. Lipid Res.3, 1–17Google Scholar
  25. Oesterhelt, D., Stoeckenius, W. (1971). Nature New Biol.233, 149–152Google Scholar
  26. Oro, J., Nooner, D.W., Zlatkis, A., Wikstrom, S.A., Barghoorn, E. (1965). Science148, 77–79Google Scholar
  27. Stoeckenius, W., Rowen, R. (1967). J. Cell Biol.34, 365–393Google Scholar
  28. Tornabene, T.G. (1973). Biochim. Biophys. Acta.306, 173–185Google Scholar
  29. Tornabene, T.G., Ogg, J.E. (1971). Biochim. Biophys. Acta.239, 133–141Google Scholar
  30. Tornabene, T.G., Kates, M., Gelpi, E., Oro, J. (1969). J. Lipid Res.10, 294–303Google Scholar
  31. Tornabene, T.G. (1978). J. Mol. Evol.11, 253–257Google Scholar
  32. Woese, C.R., Fox, G.E. (1977). Proc. Nat. Acad. Sci. U.S.74, 5088–5090Google Scholar
  33. Woese, C.R., Magrum, L.J., Fox, G.E. (1978). J. Mol. Evol.11, 245–252Google Scholar
  34. Zeikus, J.G., Wolfe, R.S. (1972). J. Bacteriol.109, 707–713Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • T. G. Tornabene
    • 1
  • R. S. Wolfe
    • 2
  • W. E. Balch
    • 2
  • G. Holzer
    • 3
  • G. E. Fox
    • 3
  • J. Oro
    • 3
  1. 1.Department of MicrobiologyColorado State UniversityFort CollinsUSA
  2. 2.Department of MicrobiologyUniversity of IllinoisUrbanaUSA
  3. 3.Departments of Biophysical Sciences and ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations