Advertisement

Journal of Molecular Evolution

, Volume 11, Issue 3, pp 245–252 | Cite as

Archaebacteria

  • C. R. Woese
  • L. J. Magrum
  • G. E. Fox
Article

Summary

Experimental work published elsewhere has shown that the Archaebacteria encompass several distinct subgroups including methanogens, extreme halophiles, and various thermoacidophiles. The common chacteristics of Archaebacteria known to date are these: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidogly can cell walls, with in many cases, replacement by a largely proteinaceous coat; (3) the occurrence of ether linked lipids built from phytanyl chains and (4) in all cases known so far, their occurrence only in unusual habitats.

These organisms contain a number of ‘eucaryotic features’ in addition to their many bacterial attributes. This is interpreted as a strong indication that the Archaebacteria, while not actually eucaryotic, do indeed represent a third separate, line of descent as originally proposed.

Key words

Archaebacteria Extreme halophiles Tbermoplasma Sulfolobus Methanogens Progenote 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch, W.E., Magrum, L.J., Fox, G.E., Wolfe, R.S., Woese, C.R. (1977). J. Mol. Evol.9, 305Google Scholar
  2. Baumstark, B., Hack, J., Heckman, J., Bayley, S., RajBhandary, U.L. (in press)Google Scholar
  3. Best, A.N. (1978). J. Bacteriol.133, 240Google Scholar
  4. Brierley, C.L., Brierley, J.A. (1973). Can. J. Microbiol.19, 183Google Scholar
  5. Brock, T.D., Brock, D.M., Belly, R.T., Weiss, R.L. (1972). Arch. Mikrobiol.84, 54Google Scholar
  6. Brown, A.D., Cho, K.Y. (1970). J. Gen. Microbiol.62, 267Google Scholar
  7. Brown, A.D., Shorey, C.D. (1963). J. Cell Biol.18, 681Google Scholar
  8. Cheeseman, P., Toms-Wood, A., Wolfe,R.S. (1972). J. Bacteriol.112, 527Google Scholar
  9. Darland, G., Brock, T.D., Samsonoff, W., Conti, S.F. (1970). Science170, 1416Google Scholar
  10. Fox, G.E., Magrum, L.J., Balch, W.E., Wolfe, R.S., Woese, C.R. (1977). Proc. Nat. Acad. Sci. USA74, 4537Google Scholar
  11. Fox, G.E., Woese, C.R. (1975a). J. Mol. Evol.6, 61Google Scholar
  12. Fox, G.E., Woese, C.R. (1975b). Nature256, 505Google Scholar
  13. Jones, J.B., Bowers, B., Stadtman, T.C. (1977). J. Bacteriol.130, 1357Google Scholar
  14. Joshi, J.G., Guild, W.R., Handler, P. (1963). J. Mol. Biol.6, 34Google Scholar
  15. Kandler, O., König, H. (1978). Arch. Microbiol. (in press)Google Scholar
  16. Kandler, O., Hippe, H. (1977). Arch. Microbiol.113, 57Google Scholar
  17. Kates, M. (1972). In Ether lipids, chemistry and biology. p. 352. New York: Academic PressGoogle Scholar
  18. Kates, M., Palameta, B., Joo, C.N., Kushner, D.J., Gibbons, N.E., (1966). Biochem.5, 4092Google Scholar
  19. Kushner, D.J., Onishi, H. (1968). Can. J. Biochem.46, 997Google Scholar
  20. Langworthy, T.A., Mayberry, W.R., Smith, P.F. (1976). Biochem. Biophys. Acta431, 550Google Scholar
  21. Langworthy, T.A., Mayberry, W.R., Smith, P.F. (1974). J. Bacteriol.119, 106Google Scholar
  22. Langwotthy, T.A., Smith, P.F., Mayberry, W.R. (1972). J. Bacteriol.112, 1193Google Scholar
  23. Lanyi, J.K., Hilliker, K. (1976). Biochim Biophys. Acta.448, 181Google Scholar
  24. Magrum, L.J., Luehrsen, K.R., Woese, C.R. (1978). J. Mol. Evol.11, 1Google Scholar
  25. Mah, R.A., Ward, D.M., Baresi, L., Glass, T.L. (1977). Ann. Rev. Microbiol.31, 309Google Scholar
  26. Moore, R.L., McCarthy, B.J. (1969). J. Bacteriol.99, 248Google Scholar
  27. Osterhelt, D., Stoeckenius, W. (1973). Proc. Nat. Acad. Sci. USA70, 2853Google Scholar
  28. Osterhelt, D., Stoeckenius, W. (1971). Nature New Biol.233, 149Google Scholar
  29. Reistad, R. (1972). Arch. Mikrobiol.82, 24Google Scholar
  30. deRosa, M., Gambacorta, A., Bu'Lock, J.D. (1976). Phytochem.15, 143Google Scholar
  31. deRosa, M., Gambacorta, A., Bu'Lock, J.D. (1975). J. Gen. Microbiol.86, 156Google Scholar
  32. Searcy, D.G., Stein, D., Green, G. (1978). Biosystems (in press)Google Scholar
  33. Steber, J., Schleifer, K.H. (1975). Arch. Microbiol.105, 173Google Scholar
  34. Taylor, C.D., Wolfe, R.S. (1974). J. Biol. Chem.249, 4879Google Scholar
  35. Tornabene, T.G., Wolfe, R.S., Balch, W.E., Holzer, G., Fox, G.E., Oró, J. (1978). J. Mol. Evol.11, 259Google Scholar
  36. Tsen, H.Y., RajBhandary, U.L. (in press)Google Scholar
  37. Weiss, R.L. (1974). J. Bacteriol.118, 275Google Scholar
  38. Woese, C.R. (1977). J. Mol. Evol.9, 369Google Scholar
  39. Woese, C.R., Fox, G.E., (1977a). Proc. Nat. Acad. Sci. USA74, 5088Google Scholar
  40. Woese, C.R., Fox, G.E. (1977b). J. Mol. Evol.10, 1Google Scholar
  41. Woese, C.R., Magrum, L.J., Leedle, R. (1978). Nature (submitted)Google Scholar
  42. Wolfe, R.S. (1971). Adv. Microbiol. Physiol.6, 107Google Scholar
  43. Zeikus, J.G. (1977). Bacteriol. Rev.41, 514Google Scholar
  44. Zeikus, J.G., Fuchs, G., Kenealy, W., Thaner, R.K. (1977). J. Bacteriol.132, 604Google Scholar
  45. Zeikus, J.G., Henning, D.L. (1975). J. Microbiol. Serol.41, 171Google Scholar
  46. Zeikus, J.G., Wolfe, R.S. (1973). J. Bacteriol.113, 461Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • C. R. Woese
    • 1
  • L. J. Magrum
    • 1
  • G. E. Fox
    • 2
  1. 1.Department of Genetics and DevelopmentUniversity of IllinoisUrbanaUSA
  2. 2.Department of Biophysical SciencesUniversity of HoustonHoustonUSA

Personalised recommendations