Advertisement

Molecular and Cellular Biochemistry

, Volume 15, Issue 3, pp 159–172 | Cite as

The physical state of water and ions in living cells and a new theory of the energization of biological work performance by ATP

  • Gilbert N. Ling
Review and General Articles a. review articles

Summary

In this article, the key concepts of the association-induction hypothesis and their experimental verifications were reviewed: According to this hypothesis, the bulk of cell water exists in the state of multilayers polarized and oriented by the backbones of certain proteins existing in an extended state. The major intracellular cation, K+, is also adsorbed but singly and on different protein sites (i.e.,β &γ-carboxyl groups). The living protoplasm of protein, ion and water represents a three-dimensional cooperative assembly under the control of certain cardinal adsorbents, of which ATP is a prime example. Association of ATP with the cardinal site of a key protein may produce a cooperative change in the electron distribution of the protein with consequent change of the state of ion and water adsorption. Such an alteration in the physical state of water leads to a change in the solubility of various solutes in this water as well as permeability of various solutes (e.g., Na) through this water. In contrast to the conventional concept, the role of ATP is not to provide a package of energy held in a special chemical bond. Rather, as a cardinal adsorbent, ATP acts by means of its specific electronic interaction with the protein molecules, maintaining the protein—ion—water system at a higher energy state. Dephosphorylation of ATP leads to a cooperative shift of the electron state of the whole assembly to a lower energy state. Restoration to the original resting state follows the resynthesis of ATP (where energy is injected into the system) and its readsorption on the cardinal site.

Living cells typically reside in a liquid environment. The discontinuity of the cell interior from the external milieu, essential for the normal functioning of the living cell, has long been a subject of central interest in mechanistic biology. Prominent in this discontinuity is the much higher concentration of K+ and much lower concentration of Na+ in the cell interior than in the cell environment, seen in virtually all living cells. We shall begin the present article with a discussion of the subject.

Keywords

Cell Interior Extended State Lower Energy State Consequent Change Cell Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mond, R. and Amson, K., 1928. Pflugers Arch. ges. Physiol. 220, 69–81.Google Scholar
  2. 2.
    Boyle, P. G. and Conway, E. J., 1941. J. Physiol. 100, 1–63.Google Scholar
  3. 3.
    Heppel, L. A., 1940. Amer. J. Physiol. 128, 449–454.Google Scholar
  4. 4.
    Steinbach, H. B., 1940. J. Biol. Chem. 133, 695–705.Google Scholar
  5. 5.
    Dean, R. B., 1941. Biol. Symposia 3, 331–348.Google Scholar
  6. 6.
    Hodgkin, A. L., 1951. Biol. Rev. Cambridge, 26, 339–409.Google Scholar
  7. 7.
    Bonting, S. L., 1970. Membrane and Ion Transport (Bittar, E. E., ed.) Vol. 1, pp 257–363.Google Scholar
  8. 8.
    Fischer, M. H. and Moore, G., 1908. Amer. J. Physiol. 20, 330–342.Google Scholar
  9. 9.
    Lepeschkin, W. W., 1939. Protoplasma 33, 1–12.Google Scholar
  10. 10.
    Ernst, E., 1963. Hung. Acad. Sci.Google Scholar
  11. 11.
    Ernst, E. and Fricker, J., 1934. Pflügers Arch. ges. Physiol. 234, 360–368.Google Scholar
  12. 12.
    Troschin, A. S., 1951. Biokhimiya 16, 164–170.Google Scholar
  13. 13.
    A. S., 1958. Das Problem der Zell Permeabilitat, Fischer Verlag Jena, Cermany.Google Scholar
  14. 14.
    Ling, G. N., 1951. Amer. J. Physiol. 167, 806.Google Scholar
  15. 15.
    Ling, G. N., 1952. Phosphorous Metabolism (McElroy, W. D. and Glass, B., eds.) Vol. 2, pp 748–795, John Hopkins University Press, Baltimore.Google Scholar
  16. 16.
    Ling, G. N., 1962. A Physical Theory of the Living State: The Association-Induction Hyposthesis, Blaisdell Publishing Co., Waltham, Mass.Google Scholar
  17. 17.
    Ling, G. N., Miller, C. and Ochsenfeld, M. M., 1973. Ann N. Y. Acad. Sci. 204, 6–50.Google Scholar
  18. 18.
    Jones, A. W., 1965. Ph.D. Thesis, Appendix, University of Pennsylvania.Google Scholar
  19. 19.
    Minkoff, L. and Damadian, R., 1973. Biophys. J. 13, 167–168.Google Scholar
  20. 20.
    Minkoff, L. and Damadian, R., 1974. Biophys. J. 14, 69–72.Google Scholar
  21. 21.
    Baker, P. F., Hodgkin, A. L. and Shaw, T. L., 1961. Nature 190, 885–887.Google Scholar
  22. 22.
    Oikawa, T., Spyropoulos, C. S., Tasaki, I. and Teorell, T., 1961. Acta Physiol. Scand. 52, 195–196.Google Scholar
  23. 23.
    Ling, G. N., 1965. Perspect. Biol. Med. 9, 87–106.Google Scholar
  24. 24.
    Baker, P. F., Foster, R. F., Gilbert, D. S. and Shaw, T. I., 1971. J. Physiol 219, 487–506.Google Scholar
  25. 25.
    Ling, G. N. and Bohr, G., 1971, Physiol. Chem. Phys. 3, 573–583.Google Scholar
  26. 26.
    Podolsky, R. J. and Morales, M. F., 1956. J. Biol, Chem. 218, 945–959.Google Scholar
  27. 27.
    Phillips, R. C., Philip, S. J., and Rutman, R. J., 1966. J. Amer. Chem. Soc. 88, 2631–2640.Google Scholar
  28. 28.
    Rutman, R. J. and George, P. M., 1961. Proc. Nat. Acad. Sci. 47, 1094–1109.Google Scholar
  29. 29.
    George, P., Witonsky, R. J., Trachtman, M., Wu, C., Dorwart, W., Richman, L., Richman, F. S., Shurayh, F. and Lentz, B., 1970. Biochem. Biophys. Acta. 223, 1–15.Google Scholar
  30. 30.
    Banks, B. 1969. Chem. in Britain 5, 514–519.Google Scholar
  31. 31.
    Ginzburg, M., Ginzburg, B. Z. and Tosteson, D. C., 1971. J. Membr. Biol. 6, 259–268.Google Scholar
  32. 32.
    Baddiel, C. B., Chaudhuri, D. and Stace, B. C., 1971. Biopolymers 10, 1169–1185.Google Scholar
  33. 33.
    Baron, M. H. and de Loze, C. J., 1972. J. de Chimi. Phys. 69: 1084–1094.Google Scholar
  34. 34.
    Wuepper, J. L. and Popov, A. I., 1970. J. Amer. Chem. Soc. 92, 1493–1496.Google Scholar
  35. 35.
    Balasubramanian, D. and Shaikh, R., 1973. Biopolymers 12, 1639–1650.Google Scholar
  36. 36.
    Ling, G. N. and Ochsenfeld, M. M., 1966. J. Gen. Physiol. 49, 819–843.Google Scholar
  37. 37.
    Ling, G. N. and Bohr, G., 1970. Biophys. J. 10, 519–538.Google Scholar
  38. 38.
    Jones, A. W., 1970. Physiol. Chem. Phys. 2, 151–167.Google Scholar
  39. 39.
    Karreman, G., 1972. Ann. N. Y. Acad. Sci. 204, 393–409.Google Scholar
  40. 40.
    Gulati, J., 1973. Ann. N. Y. Acad. Sci. 204, 337–357.Google Scholar
  41. 41.
    Reisin, I. L. and Gulati, J., 1973. Ann. N.Y. Acad. Sci. 204, 358–374.Google Scholar
  42. 42.
    Ling, G. N. and Ochsenfeld, M. M., 1973. Ann. N.Y. Acad. Sci. 204, 325–336.Google Scholar
  43. 43.
    Caillé, J. P. and Hinke, J. A. M., 1973. J. Canad. Physiol. Pharmacol. 51, 390–400.Google Scholar
  44. 44.
    Carpenter, D. O., Hovey, M. M. and Bak, A. F., 1973. Ann N.Y. Acad. Sci. 204, 502–530.Google Scholar
  45. 45.
    Chambers, R. and Kao, C.Y., 1952. Exper. Cell. Res. 3, 564–573.Google Scholar
  46. 46.
    McBain, J. W. and Peacker, C. R., 1930. J. Phys. Chem. 34, 1033–1040.Google Scholar
  47. 47.
    Ling, G. N., 1969. Intern. Rev. Cytol. 26, 1–61.Google Scholar
  48. 48.
    Schwindewolf, U., 1953. Naturwissenschaften 40, 435.Google Scholar
  49. 49.
    Ling, G. N., 1965. Ann N.Y. Acad. Sci. 125, 401–417.Google Scholar
  50. 50.
    Ling, G. N., 1975. Physiol. Chem. Phys. 7, 91–93.Google Scholar
  51. 51.
    Wheaton, R. M. and Bauman, W. C., 1953. Ann. N.Y. Acad. Sci. 57, 159–176.Google Scholar
  52. 52.
    Ling, G. N. and Sobel 1975. Physiol. Chem. Phys. 7, 515–421.Google Scholar
  53. 53.
    Ling, G. N. and Negendank, W., 1970. Physiol. Chem. Phys. 2, 15–33.Google Scholar
  54. 54.
    Ling, G. N. and Walton, C. L., 1976. Science, 191, 293–295.Google Scholar
  55. 55.
    Ling, G. N., 1973. Physiol. Chem. Phys. 5, 295–311.Google Scholar
  56. 56.
    Ling, G. N. and Ochsenfeld, M. M., 1973. Science 181, 78–81.Google Scholar
  57. 57.
    Chambers, R. and Hale, H. P., 1932. Proc. Roy. Soc. B 110, 336–391.Google Scholar
  58. 58.
    Miller, C. and Ling, G. N., 1970. Physiol. Chem. Phys. 2, 495–498.Google Scholar
  59. 59.
    Hallet, J., 1965. Fed. Proc. 24, 5–34.Google Scholar
  60. 60.
    Rapatz, G. and Luyet, B. J., 1959. Biodynamica 8, 121–144.Google Scholar
  61. 61.
    Ling, G. N., 1964. J. Biopolymers 1, 91–116 (Biol. Symp. Issue).Google Scholar
  62. 62.
    Ling, G. N., 1966. Fed. Proc. 25, 958–970.Google Scholar
  63. 63.
    Weissbluth, M., 1974. Hemoglobin, Cooperativity and Electronic Properties, Springer-Verlag, New York.Google Scholar
  64. 64.
    Ho, C., Lindstrom, T. R., Baldassare, J. J. and Breen, J. J., 1973. Ann. N.Y. Acad. Sci. 222, 21–39.Google Scholar
  65. 65.
    Hill, D. K., 1960. J. Physiol. 150, 347–373.Google Scholar
  66. 66.
    Steinhardt, J. and Zaiser, E. M., 1951. J. Biol. Chem. 190, 197–210.Google Scholar
  67. 67.
    Steinhardt, J. and Zaiser, E. M., 1953. J. Amer. Chem. Soc. 75, 1599–1605.Google Scholar
  68. 68.
    Benesch, R. and Benesch, R. E., 1969. Nature 221, 618–622.Google Scholar
  69. 69.
    Chanutin, A. and Curnish, R. R., 1967. Arch. Biochem. Biophys. 121, 96–102.Google Scholar
  70. 70.
    Ling, G. N., 1974. Physiol. Chem. Phys. 6, 285–286.Google Scholar
  71. 71.
    Robb, J. S., Grubb, M. and Braunfelds, H., 1955. Amer. J. Physiol. 181, 39–42.Google Scholar
  72. 72.
    Hayashi, T. and Rosenbluth, R., 1952. J. Cell. Comp. Physiol. 40, 495–506.Google Scholar
  73. 73.
    Chanutin, A. and Curnish, R. R., 1964. Arch. Biochem. Biophys. 106, 433–439.Google Scholar
  74. 74.
    Lundsgaard, E., 1930. Biochem. Z. 227, 51–83.Google Scholar
  75. 75.
    Henriques, V. and Lundsgaard, E., 1931. Biochem. Z. 236, 219–225.Google Scholar
  76. 76.
    Gulati, J., Ochsenfeld, M. M., and Ling, G. N., 1971. Biophys. J. 11, 973–980.Google Scholar
  77. 77.
    Naitoh, Y. and Kaneko, H., 1972. Science 176, 523–524.Google Scholar
  78. 78.
    Nanninga, L. B. and Mommaerts, W. F. H. M., 1957. Proc. Nat. Acad. Sci. U.S. 43, 540–542.Google Scholar
  79. 79.
    Asakura, S., 1961. Arch. Biochem. Biophys. 92, 140–149.Google Scholar
  80. 80.
    Weibull, C., 1960. The Bacteria (Gunsalus, I. C. and Stainer, R. Y., eds.) Vol. 1, Chapt. 4, Academic Press, New York.Google Scholar
  81. 81.
    Monod, J., Changeux, J. and Jacob, F., 1963. J. Molec. Biol. 6, 306–329.Google Scholar
  82. 82.
    Ling, G. N., 1970. Proc. Nat. Acad. Sci. 67, 296–301.Google Scholar
  83. 83.
    Ling, G. N. and Bohr, G. F., 1971. Physiol. Chem. Phys. 3, 431–447.Google Scholar
  84. 84.
    Jones, A. W. 1973. Ann N.Y. Acad. Sci. 204, 379–392.Google Scholar

Copyright information

© Dr. W. Junk b.v. Publishers 1977

Authors and Affiliations

  • Gilbert N. Ling
    • 1
  1. 1.Department of Molecular BiologyPennsylvania HospitalPhiladelphiaUSA

Personalised recommendations