Environmental Geochemistry and Health

, Volume 12, Issue 1–2, pp 115–120 | Cite as

Aluminum neurotoxicity in mammals

  • H. M. Wisniewski
  • R. C. Moretz
  • J. A. Sturman
  • G. Y. Wen
  • J. W. Shek


Although aluminum comprises a large percentage of the Earth's crust, it is excluded from body tissues, and especially from the central nervous system. When aluminum is experimentally introduced to the central nervous system, several neurotoxic effects are observed:i.e. neurofibrillary changes, behavioral and cognitive deficits and enzymatic and neurotransmitter changes, as well as certain types of epileptic seizures.

The localization of relatively high levels of aluminum in Alzheimer disease, Guamanian amyotrophic lateral sclerosis and Parkinsonism-dementia has led to the implication of aluminum as a pathogenic factor in these diseases. Recent studies have shown that microtubule-associated proteins are part of the paired helical filaments which make up the intraneuronal neurofibrillary tangle. Other studies have identified the protein making the vascular and neuritic (senile) plaque amyloid and located the gene responsible for this protein to chromosome 21.

Our electron microprobe analysis studies have not found the levels of aluminum or silicon in either the neurofibrillary tangles or amyloid cores reported elsewhere, nor have the levels of aluminum been elevated in approximately one half of the tangles and plaque cores examined to date.


Amyotrophic Lateral Sclerosis Alzheimer Disease Electron Microprobe Epileptic Seizure Neurofibrillary Tangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfrey, A.C., LeGendre, G.R. and Kaehny, W.D. 1976. The dialysis encephalopathy syndrome. Possible aluminum intoxication.New England J. Med.,294, 184–188.Google Scholar
  2. Anderton, B.H., Breinburg, D., Downes, M.J., Green, P.J., Tomlinson, B.E., Ulrich, J., Wood, J.N. and Kahn, J. 1982. Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants.Nature,298, 84–86.Google Scholar
  3. Bahmanyar, S., Higgins, G.A., Goldgaber, D., Lewis, D.A., Morrison, J.H., Wilson, M.C., Shankar, S.K. and Gajdusek, D.C. 1987. Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer's disease.Science,237, 77–80.Google Scholar
  4. Bancher, C., Lassmann, H., Budka, H., Grundke-Iqbal, I., Iqbal, K., Wiche, G., Seitelberger G. and Wisniewski, H.M. 1987. Neurofibrillary tangles in Alzheimer's disease and progressive supranuclear palsy: antigenic similarities and differences. Microtubule-associated protein tau antigenicity is prominent in all types of tangles.Acta Neuropathol. (Berlin),74, 39–46.Google Scholar
  5. Bobin, S.A., Currie, J.R., Merz, P.A., Miller, D.L., Styles, J., Walker, W.A., Wen, G.Y. and Wisniewski, H.M. 1987. The comparative immunoreactivities of brain amyloids in Alzheimer's disease and scrapie.Acta Neropathol. (Berlin),74, 313–323.Google Scholar
  6. Bolton, D.C., Bendheim, P.E., Marmorstein, A.D. and Potempska, A. 1987. Isolation and structural studies of the intact scrapie agent protein.Arch. Biochem. Biophys.,258, 579–590.Google Scholar
  7. Bolton, D.C., Meyer, R.K. and Prusiner, S.B. 1985. Scrapie PrP 27–30 is a sialoglycoprotein.J. Virol.,53, 596–606.Google Scholar
  8. Brace, M.E. 1981. Serial studies on the development of cerebral amyloidosis and vacuolar degeneration in murine scrapie.J. Comp. Pathol.,91, 589–597.Google Scholar
  9. Burks, J.S., Alfrey, A.C., Huddlestone, J., Norenberg, M.D. and Lewin, E. 1976. A fatal encephalopathy in chronic haemodialysis patients.Lancet,i, 764–768.Google Scholar
  10. Candy, J.M., Edwardson, J.A., Klinowski, J., Oakley, A.E., Perry, E.K. and Perry, R.H. 1985. Co-localization of aluminium and silicon in senile plaques: implications for the neurochemical pathology of Alzheimer's disease. In: Traber, J. and Gispin, W.H. (eds.),Senile Dementia of the Alzheimer Type: Early Diagnosis, Neuropathology and Animal Models, pp.183–197. Springer-Verlag, Berlin.Google Scholar
  11. Candy, J.M., Oakley, A.E., Atack, J., Perry, R.H., Perry, E.K. and Edwardson, J.A. 1984. New observations on the nature of senile plaque cores. In: Vizi, E.S. and Magyar, K. (eds.), Regulation of Transmitter Function,Proc. Fifth Meeting of the European Society of Neurochemistry, pp.301–304. Elsevier, Amsterdam.Google Scholar
  12. Candy, J.M., Klinowski, J., Perry, R.H., Perry, E.K., Fairbaim, A., Oakley, A.E., Carpenter, T.A., Atack, J.R., Blessed, G. and Edwardson, J.A. 1986. Aluminosilicates and senile plaque formation in Alzheimer's disease.Lancet,1, 354–357.Google Scholar
  13. Castano, E.M., Ghiso, J., Prelli, F., Gorevic, P.D., Migheli, A. and Frangione, B. 1986.In vitro formation of amyloid fibrils from two synthetic peptides of different lengths homologous to Alzheimer's disease beta-protein.Biochem. Biophys. Res. Commun.,141, 782–789.Google Scholar
  14. Crapper, D.R. and Dalton, A.J. 1973a. Alterations and short-term retention conditioned avoidance response acquisition and motivation following aluminum-induced neurofibrillary degeneration.Physiol. Behavior,10, 925–933.Google Scholar
  15. Crapper, D.R. and Dalton, A.J. 1973b. Aluminum induced neurofibrillary degeneration, brain electrical activity and alterations in acquisition and retention.Physiol. Behavior,10, 935–945.Google Scholar
  16. Crapper, D.R., Krishnan, S.S. and Dalton, A.J. 1973. Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration.Science,180, 511–513.Google Scholar
  17. Crapper McLachlan, D.R. and DeBoni, U. 1980. Aluminum in human brain disease — an overview.Neuroloxicology,1, 3–16.Google Scholar
  18. Crapper McLachlan, D.R., Krishnan, S.S., Quittkat, S. and DeBoni, U. 1980. Brain aluminum in Alzheimer's disease: influence of sample size and case selection.Neuroloxicology,1, 25–32.Google Scholar
  19. Crapper, D.R., Quittkat, S., Krishnan, S.S., Dalton, A.J. and DeBoni, U. 1980. Intranuclear aluminum content in Alzheimer's disease, dialysis encephalopathy and experimental aluminum encephalopathy.Acta Neuropathol. (Berlin),50, 19–24.Google Scholar
  20. DeBoni, U., Otvos, A., Scott, J.W. and Crapper, D.R. 1976. Neurofibrillary degeneration induced by systemic aluminum.Acta Neuropathol. (Berlin),35, 285–294.Google Scholar
  21. DeBoni, U., Scott, J.W. and Crapper, D.R. 1974. Intracellular aluminum binding; a histochemical study.Histochemistry,40, 31–37.Google Scholar
  22. Dyrks, T., Weidmann, A., Multhaup, G., Salbaum, J.M., Lemaire, H.G., Kang, J., Muller-Hill, B., Masters, C.L. and Beyreuther, K. 1988. Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer's disease.European Molecular Biology Organization (EMBO) J.,7, 949–957.Google Scholar
  23. Foncin, J.F. and El Hachimi, K.H. 1986. Neurofibrillary degeneration in Alzheimer's disease: a discussion with a contribution to aluminum pathology in man. In: Bes, A., Cahn, J., Cahn, R., Hoyer, S., Marc-Vergnes, J.P. and Wisniewski, H.M. (eds.),Current Problems in Senile Dementias, No.1, pp.202–210. John Libbey Eurotext, London-Paris.Google Scholar
  24. Galle, P., Berry, J-P. and Ducken, S. 1980. Electron microprobe ultrastructural localization of aluminum in rat brain.Acta Neuropathol. (Berlin),49, 245–247.Google Scholar
  25. Gambetti, P., Shecket, G., Ghetti, B., Hirano, A. and Dahl, D. 1983. Neurofibrillary changes in human brain. An immunocytochemical study with a neurofilament antiserum.J. Neuropathol. and Exper. Neurol.,42, 69–79.Google Scholar
  26. Garruto, R.M. 1984. Search for the cause of amyotrophic lateral sclerosis and parkinsonism-dementia of Guam: deposition of heavy metals and essential minerals in the central nervous system. In: Chen, K.M. and Yase, Y. (eds.),Amyotrophic Lateral Sclerosis in Asia and Oceania, pp.391–422. National Taiwan University, Taipei.Google Scholar
  27. Garruto, R.M., Fukatsu, R., Yanagihara, R., Gajdusek, D.C., Hook, G. and Fiori, C.E. 1984. Imaging of calcium and aluminum in neurofibrillary tangle-bearing neurons in parinsonism-dementia of Guam.Proc. Nat. Acad. Sci. (USA),81, 1875–1879.Google Scholar
  28. Garruto, R.M., Swyt, C., Fiori, C.E., Yanagihara, R. and Gajdusek, D.C. 1985. Intraneuronal deposition of calcium and aluminum in amyotrophic lateral sclerosis of Guam.Lancet,ii, 1353.Google Scholar
  29. Garruto, R.M., Swyt, C., Yanagihara, R., Fiori, C.E. and Gajdusek, D.C. 1986. Intraneuronal co-localization of silicon with calcium and aluminum in amyotrophic lateral sclerosis and parkinsonism with dementia in Guam.New England J. Med.,315, 711–712.Google Scholar
  30. Ghetti, B. and Gambetti, P. 1983. Comparative immunocytochemical characterization of neurofibrillary tangles in experimental maytansine and aluminum encephalopathies.Brain Res.,276, 388–393.Google Scholar
  31. Ghetti, B., Musicco, M., Norton, J. and Bugiani, O. 1985. Nerve cell loss in the progressive encephalopathy induced by aluminum powder. A morphologic and semiquantitative study of the purkinje cells.Neuropathol. Appl. Neurobiol.,11, 31–53.Google Scholar
  32. Glenner, G.G. and Wong, C.W. 1984a. Alzheimer's disease: initial purification and characterization of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun.,122, 885–890.Google Scholar
  33. Glenner, G.G. and Wong, C.W. 1984b. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun.,122, 1131–1135.Google Scholar
  34. Goldgaber, D., Lerman, M.I., McBride, O.W., Saffiotti, U. and Gajdusek, D.C. 1987. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease.Science,235, 877–880.PubMedGoogle Scholar
  35. Gruca, S. and Wisniewski, H.M. 1984. Cytochemical study on the effect of aluminum on neuronal Golgi apparatus and lysosomes.Acta Neuropathol. (Berlin),63, 287–295.Google Scholar
  36. Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y-C, Zaidi, M.S. and Wisniewski, H.M. 1986a. Microtubule-associated protein tau: a component of Alzheimer's paired helical filaments.J. Biol. Chem.,261, 6084–6089.Google Scholar
  37. Grundke-Iqbal, I., Iqbal, K., Tung, Y-C., Quinlan, M., Wisniewski, H.M. and Binder, L.I. 1986b. Abnormal phosphorylation of the microtubule associated protein tau in Alzheimer cytoskeletal pathology.Proc. Nat. Acad. Sci. (USA),83, 4913–4917.Google Scholar
  38. Grundke-Iqbal, I., Iqbal, K., Tung, Y-C, Wang, G.P. and Wisniewski, H.M. 1985a. Alzheimer paired helical filaments: crossreacting polypeptides present normally in brain.Acta Neuropathol. (Berlin),66, 52–61.Google Scholar
  39. Grundke-Iqbal, I., Iqbal, K., Tung, Y-C. and Wisniewski, H.M. 1984. Alzheimer paired helical filaments: immunochemical identification of polypeptides.Acta Neuropathol. (Berlin),62, 259–267.Google Scholar
  40. Grundke-Iqbal, I., Johnson, A.B., Wisniewski, H.M., Terry, R.D. and Iqbal, K. 1979. Evidence that Alzheimer neurofibrillary tangles originate from neurotubules.Lancet,i, 578–580.Google Scholar
  41. Grundke-Iqbal, I., Wang, G.P., Iqbal, K., Tung, Y-C. and Wisniewski, H.M. 1985b. Alzheimer paired helical filaments: identification of polypeptides with monoclonal antibodies.Acta Neuropathol. (Berlin),68, 279–283.Google Scholar
  42. Hetnarski, B., Wisniewski, H.M., Iqbal, K., Dziedzic, J.D. and Lajtha, A. 1980. Central cholinergic activity in aluminum-induced neurofibrillary degeneration.Annls. Neurol.,7, 489–490.Google Scholar
  43. Hope, J., Morton, L.J.D., Farquhar, C.F., Muilthaup, G., Beyreuther, K. and Kimberlin, R.H. 1986. The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein PrP.EMBO J.,5, 2591–2597.Google Scholar
  44. Iqbal, K., Zaidi, T., Thompson, C.H., Merz, P.A. and Wisniewski, H.M. 1984. Alzheimer paired helical filaments: bulk isolation, solubility and protein composition.Acta Neuropathol. (Berlin),62, 167–177.Google Scholar
  45. Joachim, C.L., Morris, J.H., Kosik, K.S. and Selkoe, D.J. 1987. Tau antisera recognizes neurofibrillary tangles in a range of neurodegenerative disorders.Annls. Neurol.,22, 514–520.Google Scholar
  46. Klatzo, I., Wisniewski, H.M. and Streicher, E. 1965. Experimental production of neurofibrillary degeneration. 1. Light microscopic observations.J. Neuropathol. Exp. Neurol.,24, 187–199.Google Scholar
  47. Kosik, K.S., Duffy, L.K., Dowling, M.M., Abraham, C., McCluskey, A. and Selkoe, D.J. 1984. Microtubule-associated protein. 2. Monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles.Proc. Nat. Acad. Sci. (USA),81, 7941–7945.Google Scholar
  48. Kosik, K.S., Joachim, C.L. and Selkoe, D.J. 1986. Microtubule- associated protein tau is a major antigenic component of paired helical filaments in Alzheimer's disease.Proc. Nat. Acad. Sci. (USA),83, 4044–4048.Google Scholar
  49. Langui, D., Anderton, B.H., Brion, J.-P. and Ulrich, J. 1988. Effects of aluminium chloride on cultured cells from rat brain hemispheres.Brain Res.,438, 67–76.Google Scholar
  50. Markesbery, W.R., Ehmann, W.D., Hossain, T.I.M., Alauddin, M. and Goodin, D.T. 1981. Instrumental neuron activation analysis of brain aluminum in Alzheimer disease and aging.Annls. Neurol.,10, 511–516.Google Scholar
  51. McDermott, J.R., Smith, A.I., Iqbal, K. and Wisniewski, H.M. 1977. Aluminum and Alzheimer's disease.Lancet,ii, 710–711.Google Scholar
  52. McDermott, J.R., Smith, A.I., Iqbal, K. and Wisniewski, H.M. 1979. Brain aluminum in aging and Alzheimer disease.Neurology,29, 809–814.Google Scholar
  53. Moretz, R.C., Wisniewski, H.M., and Lossinsky, A.S. 1983. Pathogenesis of neuritic and amyloid plaques in scrapie — ultrastructural study of early changes in the cortical neuropil. In: Samuel, D., Algeri, S., Gershon, S., Grimm, V.E. and Toffano, G. (eds.),Aging of the Brain, pp.61–79. Raven Press, New York.Google Scholar
  54. Munoz-Garcia, D., Pendlebury, W.W., Kessler, J.B. and Perl, D. 1986. An immunocytochemical comparison of cytoskeletal proteins in aluminum-induced and Alzheimer-type neurofibrillary tangles.Acta Neuropathol. (Berlin),70, 243–248.Google Scholar
  55. Oesch, B., Westway, D., Walchli, M., McKinley, M.P., Kent, S.B.H., Aebersold, R., Barry, R.A., Tempst, P., Teplow, D.B., Hood, L.E., Prasiner, S.B. and Weissman, C. 1985. A cellular gene encodes scrapie PrP 27–30 protein.Cell,40, 735–746.Google Scholar
  56. Perl, D.P. and Brody, A.R. 1980a. Alzheimer's disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons.Science,208, 297–299.PubMedGoogle Scholar
  57. Perl, D.P. and Brody, A.R. 1980b. Detection of aluminum by SEM — X-ray spectrometry within neurofibrillary tangle-bearing neurons of Alzheimer's disease.Neurotoxicology,1, 133–137.Google Scholar
  58. Perl, D.P., Gajdusek, D.C., Garruto, R.M., Yanagihara, R.T. and Gibbs, C.J. Jr. 1982. Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam.Science,217, 1053–1055.Google Scholar
  59. Perl, D.P. and Pendlebury, W.W. 1986. Aluminum neurotoxicity — potential role in the pathogenesis of neurofibrillary tangle formation.Can. J. Neurol.,13, 441–445.Google Scholar
  60. Pollock, N.J., Mirra, S.S., Binder, L.I., Hansen, L.A. and Wood, J.G. 1986. Filamentous aggregates in Pick's disease, progressive supranuclear palsy, and Alzheimer's disease share antigenic determinants with microtubule-associated protein, tau.Lancet,ii, 1211.Google Scholar
  61. Prusiner, S.B., Groth, D.F., Bolton, D.C., Kent, S.B. and Hood, L.E. 1984. Purification and structural studies of a major scrapie prion protein.Cell,38, 127–134.Google Scholar
  62. Rasool, C.G., Abraham, C., Anderton, B.H., Haugh, M., Kahn, J. and Selkoe, D.J. 1984. Alzheimer's disease: immunoreactivity of neurofibrillary tangles with anti-neurofilament and anti-paired helical filament antibodies.Brain Res.,310, 249–260.Google Scholar
  63. Robakis, N.K., Wisniewski, H.M., Jenkins, E.C., Devine-Gage, E.A., Houck, G.E., Yao, X-L., Ramakrishna, N., Wolfe, G., Silverman, W.P. and Brown, W.T. 1987a. Chromosome 21q21k sublocalisation of gene encoding beta-amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer disease and Down syndrome.Lancet,i, 384–385.Google Scholar
  64. Robakis, N.K., Wolfe, G., Ramakrishna, N. and Wisniewski, H.M. 1987b. Isolation of a cDNA encoding the Alzheimer disease and Down syndrome amyloid peptide. In:Banbury Report 27: Molecular Neuropalhology of Aging, pp.267–281. Cold Spring Harbor Laboratory.Google Scholar
  65. Simpson, J., Yates, C.M., Whyler, D.K., Wilson, H., Dewar, A.J. and Gordon, A. 1985. Biochemical studies on rabbits with aluminum induced neurofilament accumulations.Neurochem. Res.,10, 229–238.Google Scholar
  66. Stemberger, N.H., Stemberger, L.A. and Ulrich, J. 1985. Aberrant neurofilament phosphorylation in Alzheimer's disease.Proc. Nat. Acad. Sci. (USA),82, 4274–4276.Google Scholar
  67. Stunnan, J.A. and Wisniewski, H.M. 1988. Aluminum. In: Bondy, S.C. and Prasad, S. (eds.),Metal Neurotoxicity, pp.61–85. CRC Press, Inc., Boca Raton, Florida.Google Scholar
  68. Szumanska, G., Vorbrodt, A.W., Mandybur, T.I. and Wisniewski, H.M. 1987. Lectin histochemistry of plaques and tangles in Alzheimer's disease.Acta Neuropathol. (Berlin),73, 1–11.Google Scholar
  69. Szumanska, G., Vorbrodt, A.W. and Wisniewski, H.M. 1986. Lectin histochemistry of scrapie amyloid plaques.Acta Neuropathol. (Berlin),69, 205–212.Google Scholar
  70. Tanzi, R.E., Gusella, J.F., Watkins, P.C., Brans, G.A.P., St. George-Hyslop, P., van Keuren, M.L., Patterson, D., Pagan, S., Kurnit, D.M. and Neve, R.L. 1987. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus.Science,235, 880–884.PubMedGoogle Scholar
  71. Terry, R.D. and Wisniewski, H.M. 1970. The ultrastructure of the neurofibrillary tangle and the senile plaque. In: Wolstenholme, G.E.W. and O'Connor, M. (eds.),Ciba Foundation Symposium, pp. 145–168. Churchill, London.Google Scholar
  72. Traub, R.D., Rains, T.C., Garruto, R.M., Gajdusek, D.C. and Gibbs, C.J. Jr. 1981. Brain destraction alone does not elevate brain aluminum.Neurology,31, 986–990.Google Scholar
  73. Troncoso, J.C., Stemberger, N.H., Stemberger, L.A., Huffman, P.N. and Price, D.L. 1986. Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum.Brain Res.,364, 295–300.Google Scholar
  74. Ulrich, J., Haugh, M., Anderton, B.H., Probst, A., Lautenschlager, C. and His, B. 1987. Alzheimer dementia and Pick's disease: neurofibrillary tangles and Pick bodies are associated with identical phosphorylated neurofilament epitopes.Acta Neuropathol. (Berlin),73, 240–246.Google Scholar
  75. Vorbrodt, A.W., Dobrogowska, D.M., Kim, Y.S., Lossinsky, A.S. and Wisniewski, H.M. 1988. Ultrastructural studies of glycoconjugates in brain micro-blood vessels and amyloid plaques of scrapie- infected mice.Acta Neuropathol. (Berlin),75, 277–287.Google Scholar
  76. Vorbrodt, A.W. and Wisniewski, H.M. 1982. Plasmalemma-bound nucleoside-diphosphatase as a cytochemical marker of central nervous system (CNS) mesodermal cells.J. Histochem. Cytochem.,30, 418–424.Google Scholar
  77. Ward, A.A. Jr. 1972. Topical convulsant metals. In: Purpura, D.P., Penny, J.K., Tower, D.B., Woodbury, D.M. and Walter, R.D. (eds.),Experimental Models of Epilepsy: A Manual for Laboratory Worker, pp.13–35. Raven Press, New York.Google Scholar
  78. Wen, G.Y. and Wisniewski, H.M. 1984. Substructures of neurofilaments.Acta Neuropathol. (Berlin),64, 339–343.Google Scholar
  79. Wen, G.Y. and Wisniewski, H.M. 1985. Histochemical localization of aluminum in the rabbit CNS.Acta Neuropathol. (Berlin),68, 175–184.Google Scholar
  80. Wen, G.Y., Wisniewski, H.M., Wang, K.C., Iqbal, K. and Rubenstein, R. 1986. Coexistence of two types of paired helical filaments in Alzheimer's diseased brains.J. Neuropathol. Exp. Neurol.,45, 337.Google Scholar
  81. Wisniewski, H.M., Bruce, M.E. and Fraser, H. 1975. Infectious etiology of neuritic (senile) plaques in mice.Science,190, 1108–1110.Google Scholar
  82. Wisniewski, H.M., Korthals, J., Kopeloff, L.M., Ferszt, R., Chusid, J.C. and Terry, R.D. 1977. Neurotoxicity of aluminum. In: Roizen, H., Shiriki, H. and Grcevic, N. (eds.),Neurotoxicology, pp.313–315. Raven Press, New York.Google Scholar
  83. Wisniewski, H.M., Merz, P.A. and Iqbal, K. 1984a. Ultrastructure of paired helical filaments of Alzheimer's neurofibrillary tangle.J. Neuropathol. Exp. Neurol.,43, 643–656.Google Scholar
  84. Wisniewski, H.M., Narang, H.K. and Terry, R.D. 1976. Neurofibrillary tangles of paired helical filaments.J. Neurol. Sci,27, 173–181.Google Scholar
  85. Wisniewski, H.M., Shek, I., Gruca, S. and Sturman, J.A. 1984b. Aluminum-induced neurofibrillary changes in axons and dendrites.Acta Neuropathol. (Berlin),63, 190–197.Google Scholar
  86. Wisniewski, H.M., Sinatra, R.S., Iqbal, K. and Grandke-Iqbal, I. 1981. Neurofibrillary and synaplic pathology in the aged brain. In: Johnson, J.E. (ed.).Aging and Cell Structure, Volume 1, pp.105–142. Plenum Publishing Corp., New York.Google Scholar
  87. Wisniewski, H.M., Sturman, J.A. and Shek, J.W. 1980. Aluminum chloride induced neurofibrillary changes in the developing rabbit: a chronic model.Annls Neurol.,8, 479–490.Google Scholar
  88. Wisniewski, H.M., Sturman, J.A. and Shek, J.W. 1982. Chronic model of neurofibrillary changes induced in mature rabbits by metallic aluminum.Neurobiol. Aging,3, 11–22.Google Scholar
  89. Wisniewski, H.M. and Terry, R.D. 1973a. Morphology of the aging brain, human and animal.Progr. Brain Res.,40, 167–180.Google Scholar
  90. Wisniewski, H.M. and Terry, R.D. 1973b. Reexamination of the pathogenesis of the senile plaque. In: Zimmerman, H.M. (ed.),Progress in Neuropathology, Volume 2, pp. 1–26. Grune and Stratton, New York.Google Scholar
  91. Wisniewski, H.M., Vorbrodt, A.W., Moretz, R.C., Lossinsky, A.S. and Grundke-Iqbal, I. 1982. Pathogenesis of neuritic (senile) and amyloid plaque formation. In: Hoyer, S. (ed.).The Aging Brain Physiological and Pathophysiological Aspects, Experimental Brain Research, Suppl. 5, pp.3–9. Springer-Verliag, Berlin-Heidelberg-New York.Google Scholar
  92. Wisniewski, H.M. and Wen, G.Y. 1985a. Substructures of paired helical filaments from Alzheimer's disease neurofibrillary tangles.Acta Neuropathol. (Berlin),66, 173–176.Google Scholar
  93. Wisniewski, H.M. and Wen, G.Y. 1985b. High resolution stereo electron microscopy of neurofilaments and Alzheimer type paired helical filaments. In: Bailey, G.W. (ed.),Proc. 43rd Annual Meeting of the EMSA, pp.730–733. San Francisco Press, San Francisco.Google Scholar
  94. Wisniewski, H.M., Wen, G.Y., Wang, K.C., Iqbal, K. and Rubenstein, R. 1986. Determination of the handedness of paired helical filaments in Alzheimer's disease. In: Metuzals, J. (ed.),Electron Microscopy and Alzheimer's Disease, pp.21–24. San Francisco Press, San Francisco.Google Scholar
  95. Wood, J.G., Mirra, S.S., Pollock, N.J. and Binder, L.I. 1986. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau.Proc. Nat. Acad. Sci. (USA),83, 4040–4043.Google Scholar
  96. Yates, C.M., Simpson, J., Russell, D. and Gordon, A. 1980. Cholinergic enzymes in neurofibrillary degeneration produced by aluminum.Brain Res.,197, 269–274.Google Scholar

Copyright information

© Sciences and Technology Letters 1990

Authors and Affiliations

  • H. M. Wisniewski
    • 1
  • R. C. Moretz
    • 1
  • J. A. Sturman
    • 2
    • 1
  • G. Y. Wen
    • 1
  • J. W. Shek
    • 1
  1. 1.Institute for Basic Research in Developmental Disabilities, Departments of Pathological NeurobiologyNew York State Office of Mental Retardation and Developmental DisabilitiesUSA
  2. 2.Developmental BiochemistryStaten IslandUSA

Personalised recommendations