Journal of Molecular Evolution

, Volume 11, Issue 4, pp 293–311 | Cite as

HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth

  • J. P. Ferris
  • P. C. Joshi
  • E. H. Edelson
  • J. G. Lawless
Article

Summary

Dilute (0.1M) solutions of HCN condense to oligomers at pH 9.2. Hydrolysis of these oligomers yields 4,5-dihydroxypyrimidine, orotic acid, 5-hydroxyuracil, adenine, 4-aminoimidazole-5-carboxamide and amino acids. These results, together with the earlier data, demonstrate that the three main classes of nitrogen-containing biomolecules, purines, pyrimidines and amino acids may have originated from HCN on the primitive earth. The observation of orotic acid and 4-aminoimidazole-5-carboxamide suggests that the contemporary biosynthetic pathways for nucleotides may have evolved from the compounds released on hydrolysis of HCN oligomers.

Key words

HCN Cyanide HCN oligomers 4,5-Dihydroxypyrimidine Orotic Acid 5-Hydroxyuracil Adenine 4-Aminoimidazole-5-carboxamide Prebiotic Primitive earth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, T., Tanimura, A., Asahina, M. (1963). J. Vitaminol.9, 217–226Google Scholar
  2. Bar-Nun, A., Tauber, M.E. (1972). Space Life Sciences3, 254–259Google Scholar
  3. Miller, S.L. (1970). Origins of Life, Vol. I, L. Margulis, ed. p. 214, New York: Gordon and BreachGoogle Scholar
  4. Murao, K., Saneyoshi, M., Harada, R., Nishimura, S. (1970). Biochem. Biophys. Res. Commun.38, 657–662Google Scholar
  5. Oro, J., Kimball, A.P. (1962). Arch. Biochem. Biophys.96, 293–313Google Scholar
  6. Oro, J., Kimball, A.P. (1961). Arch Biochem. Biophys.94, 217–226Google Scholar
  7. Oro, J., Kamat, J.S. (1961), Nature190, 442–443Google Scholar
  8. Pollock, G.E., Oyama, U.I., Johnson, R.O. (1965). J. Gas Chromatog.3, 174–176Google Scholar
  9. Sanchez, R.A., Ferris, J.P., Orgel, L.E. (1968). J. Mol. Biol.38, 121–128Google Scholar
  10. Sanchez, R.A., Ferris, J.P., Orgel, L.E. (1967). J. Mol. Biol.30, 223–253Google Scholar
  11. Sanchez, R.A., Ferris, J.P., Orgel, L.E. (1966). Science153, 72–73Google Scholar
  12. Scoggins, M.W. (1972). Anal. Chem.44, 1294–1296Google Scholar
  13. Smith, D.A., Visser, D.W. (1965). J. Biol. Chem.240, 446–453Google Scholar
  14. Smith, T. (1969). Chromatographic and Electrophoretic Techniques, 3rd Edition, p. 289 New York: InterscienceGoogle Scholar
  15. Visher, E., Chargaff, E. (1948). J. Biol. Chem.176, 703–714Google Scholar
  16. Volker. T. (1960). Angew. Chem.176, 379–384Google Scholar
  17. Wakamatsu, H., Yamada, Y., Saito, T., Kumashiro, I., Takenishi, T. (1966). J. Org. Chem.31, 2035–2036Google Scholar
  18. Weiss, C.B. (1973). J. Mol. Evol.2, 199–204Google Scholar
  19. Yamada, Y., Noda, I., Kumashiro, I., Takenishi, T. (1969). Bull Chem. Soc. Japan42, 1454–1456Google Scholar
  20. Yamada, Y., Kumashiro, I., Takenishi, T. (1968). J. Org. Chem.33, 642–647Google Scholar
  21. Yanio, M., Barrell, B.G. (1969). Nature222, 278–279Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. P. Ferris
    • 1
  • P. C. Joshi
    • 1
  • E. H. Edelson
    • 1
  • J. G. Lawless
    • 2
  1. 1.Department of ChemistryRensselaer Polytechnic InstituteTroyUSA
  2. 2.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations