Journal of Molecular Evolution

, Volume 17, Issue 4, pp 197–213 | Cite as

Evolution of cytochromec investigated by the maximum parsimony method

  • Marietta L. Baba
  • Linda L. Darga
  • Morris Goodman
  • John Czelusniak
Article

Summary

Rates of evolution for cytochromec over the past one billion years were calculated from a maximum parsimony dendrogram which approximates the phylogeny of 87 lineages. Two periods of evolutionary acceleration and deceleration apparently occurred for the cytochromec molecule. The tempo of evolutionary change indicated by this analysis was compared to the patterns of acceleration and deceleration in the ancestry of several other proteins The synchrony of these tempos of molecular change supports the notion that rapid genetic evolution accompanied periods of major adaptive radiations.

Rates of change at different times in several structural-functional areas of cytochromec were also investigated in order to test the Darwinian hypothesis that during periods of rapid evolution, functional sites accumulate proportionately more substitutions than areas with no known function. Rates of change in four proposed functional groupings of sites were therefore compared to rates in areas of unknown function for several different time periods. This analysis revealed a significant increase in the rate of evolution for sites associated with the regions of cytochromec oxidase and reductase interaction during the period between the emergence of the eutherian ancestor to the emergence of the anthropoid ancestor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed AJ, Smith HT, Smith MB, Millett FS (1978) Biochemistry 17:2479–2483Google Scholar
  2. Borden D, Ferguson-Miller S, Tarr G. Rodriguez D (1978) Fed Proc 36(6):1517Google Scholar
  3. Brautigan DL, Ferguson-Miller S, Margoliash E (1978a) J Biol Chem 253:130–139Google Scholar
  4. Brautigan DL, Ferguson-Miller S, Tarr G, Margoliash E (1978b) J Biol Chem 253:140–148Google Scholar
  5. Cloud P (1974) Am Sci 62:5466Google Scholar
  6. Czelusniak J, Goodman M, Moore GW (1978) J Mol Evol 11:75–85Google Scholar
  7. Dayhoff MO (1972) Atlas of protein sequence and structure, vol 5. The National Biomedical Research Foundation, Washington DC, p D7Google Scholar
  8. Dayhoff MO (1973) Atlas of protein sequence and structure, vol 5 Suppl I, The National Biomedical Research Foundation, Washington DC, p S12Google Scholar
  9. Dayhoff MO (1976) Atlas of protein sequence and structure, vol 5, Suppl 2, The National Biomedical Research Foundation, Washington DC, p 25Google Scholar
  10. Dayhoff MO (1978) Atlas of protein sequence and structure, vol 5, Suppl 3, The National Biomedical Research Foundation, Washington DC, p 29Google Scholar
  11. Dickerson RE (1971) J Mol Evol 1:26–45Google Scholar
  12. Dickerson RE (1972) Sci Am 226:58–73Google Scholar
  13. Dickerson RE (1980) Personal communicationGoogle Scholar
  14. Dickerson RE, Timkovich R (1975) In: Boyer PA (ed) The Enzymes, vol XI, Oxidation-Reduction, part A, Academic Press, New York, p 397Google Scholar
  15. Dickerson RE, Timkovich R, Almassy RJ (1976) J Mol Biol 100:473–491Google Scholar
  16. Farris JS (1972) Am Nat 106:645–668Google Scholar
  17. Fasman GD (ed) (1976) Handbook of Biochemistry and Molecular Biology, vol III. Proteins. CRC Press, Cleveland, p 268Google Scholar
  18. Ferguson-Miller S, Brautigan DL, Margoliash E (1978) J Biol Chem 253:149–159Google Scholar
  19. Fitch WM, Margoliash E (1967) Science 155:279–284Google Scholar
  20. Fitch WM, Langley CH (1968) Fed Proc 35:2092–2097Google Scholar
  21. Goodman M (1976) In: Goodman M, Tashian RE (eds) Molecular Anthropology. Plenum Press, New York, p 321Google Scholar
  22. Goodman M, Czelusniak J (1980) In: Protides of the Biological Fluids (in press)Google Scholar
  23. Goodman M, Moore GW (1971) Syst Zool 20(1):19–62Google Scholar
  24. Goodman M, Moore GW (1977) J Mol Evol 10:7–47Google Scholar
  25. Goodman M, Moore GW, Barnabas J, Matsuda G (1974) J Mol Evol 3:1–48Google Scholar
  26. Goodman M, Moore GW, Matsuda G (1975) Nature 253:603–608Google Scholar
  27. Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G (1979a) Syst Zool 28:132–163Google Scholar
  28. Goodman M, Rechere J-F, Haiech J, Demaille JG (1979b) J Mol Evol 13:331–352Google Scholar
  29. Gould SJ, Eldredge N (1977) Paleobiology. 3(2)115–151Google Scholar
  30. Gupta AP (1979) Arthropod Phylogeny. Van Nostrand Reinhold, New YorkGoogle Scholar
  31. Jemmerson R, Margoliash E (1979A) J Biol Chem 254(24):12706–12716Google Scholar
  32. Jemmerson R, Margoliash E (1979) Nature 282:468–471Google Scholar
  33. Kang CH, Brautigan DL, Osheroff N (1978) J Biol Chem 253:6505–6510Google Scholar
  34. Keilin D (1925) Proc Roy Soc Ser B98:321Google Scholar
  35. Keilin D (1966) The history of cell respiration and cytochrome. Cambridge University Press, LondonGoogle Scholar
  36. Konig BW, Osheroff N, Wilms J, Muijsers AO, Dikker HL Margoliash E (1980) FEBS Lett 111:395–398Google Scholar
  37. Langley CH, Fitch WM (1973) In: Morton (ed) Genetic structure of population, University of Hawaii Press, Honolulu, p 246Google Scholar
  38. Mandel N, Mandel C, Trus BL, Rosenberg J, Carlson G, Dickerson RD (1977) J Biol Chem 252(13):4619–4636Google Scholar
  39. Margoliash E (1963) Proc Natl Acad Sci 50:672Google Scholar
  40. Margoliash E, Ferguson-Miller S, Brautigan DL, Chiuiano AH (1976) In: Markham R, Horne RW (eds) Structure-function relationships in proteins. Elsevier/North Holland, Amsterdam, p 145Google Scholar
  41. Margoliash E, Ferguson-Miller S, Brautigan DL, Kang CH, Dethmers JK (1977) In: Van Dam K, Van Belder BF (eds) Structure and functions of energy-transducing membranes. Elsevier, North Holland, Amsterdam, p 69Google Scholar
  42. Margoliash E Fitch WM (1968) Ann NY Acad Sci 151:359Google Scholar
  43. Margoliash E, Fitch WM, Dickerson R (1968) Brookhaven Sym Biol 21:259Google Scholar
  44. Margoliash E Smith EL (1965) In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, p 221Google Scholar
  45. Margoliash E, Schejter A (1966) Adv Protein Chem 21:113Google Scholar
  46. Mayr E (1963) Animal species and evolution. Harvard Univ Press, CambridgeGoogle Scholar
  47. McKenna MC (1969) Ann NY Acad Sci 167(1):217–240Google Scholar
  48. Moore GW (1971) Institute of Statistics Mimeograph Series, no 731. North Carolina State University, Raleigh NCGoogle Scholar
  49. Moore GW (1976) In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum Press, New YorkGoogle Scholar
  50. Moore GW (1977) J Theor Biol 66:95–106Google Scholar
  51. Moore GW, Barnabas J, Goodman M (1973) J Theor Biol 38 459–485Google Scholar
  52. Moore GW, Goodman M, Callahan C, Holmquist R, Moise H (1976) J Mol Biol 105:15–37Google Scholar
  53. Myer Y (1978) Fed Proc 37:1514Google Scholar
  54. Myer Y (1979) Fed Proc 38:639Google Scholar
  55. Ng S, Smith MB, Smith HT, Millett F (1976) Biochemistry 16:4975–4978Google Scholar
  56. Osheroff N, Jemmerson R, Speck SH, Ferguson-Miller S, Margoliash E (1979) J Biol Chem 254(24):12717–12724Google Scholar
  57. Osheroff N, Borden D, Koppenol WH, Margoliash E (1980) J Biol Chem 255:1689–1697Google Scholar
  58. Pettigrew G (1978) FEBS Lett 86:14–16Google Scholar
  59. Romer AS (1966) Vertebrate paleontology. University of Chicago Press, ChicagoGoogle Scholar
  60. Schopf JW Haugh BN Molnar RE, Satterthevait DF (1973) J Paleontol 47:1–9Google Scholar
  61. Shaw DC, Williams KL, Smith E, Birt LM (1978) Biochim Biophys Acta 532:179–184Google Scholar
  62. Smith HT, Staudenmayer N Millett F (1977) Biochemistry 16:4971–4978Google Scholar
  63. Smith L, Davies HC, Nava M (1974) J Biol Chem 249(9):2904–2910Google Scholar
  64. Smith L, Davies HC Nava ME (1976) Biochem 15(26):5827–5831Google Scholar
  65. Sokal RR, Micherner CD (1958) Univ Kan Sci Bull 38:1409–1438Google Scholar
  66. Speck SH, Ferguson-Miller S, Osheroff N, Margoliash E (1979) Proc Natl Acd Sci 76(1):155–159Google Scholar
  67. Speck SH, Koppenol WH, Osheroff N, Dethmers JK, Kang CH Margoliash E Ferguson-Miller S (1980) In: Lee CP, Schatz G, Ernster L (eds) Membrane bioenergetics. Addison-Wesley Publishing Co, Reading, p 31Google Scholar
  68. Stanley SM (1975) Proc Natl Acad Sci 72(2):646–650Google Scholar
  69. Staudenmayer N, Ng S, Smith MB, Millett F (1977) Biochemis-Biochemistry 15:3198–3205Google Scholar
  70. Staudenmayer N, Ng S, Smith MB, Millett F (1977) Biochemiytry 16:600–604Google Scholar
  71. Takano T, Dickerson RE (1980) Manuscript submitted to the Proceeding of the National Academy of ScienceGoogle Scholar
  72. Thompson RB, Borden D Tarr GE, Margoliash E (1978) J Biol Chem 253(24)895–901Google Scholar
  73. Timkovich R, Dickerson RE (1976) J Biol Chem 251(13):4033–4046Google Scholar
  74. Whittacker RH (1969) Science 163:150–160Google Scholar
  75. Young JZ (1962) The life of the vertebrates. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Marietta L. Baba
    • 1
  • Linda L. Darga
    • 2
  • Morris Goodman
    • 3
  • John Czelusniak
    • 3
  1. 1.Department of Anthropology, College of Liberal ArtsWayne State UniversityDetroitUSA
  2. 2.Children's HospitalDetroitUSA
  3. 3.Department of Anatomy, School of MedicineWayne State UniversityDetroitUSA

Personalised recommendations