Advertisement

Journal of Molecular Evolution

, Volume 14, Issue 4, pp 259–266 | Cite as

Characterization of the myoglobin of the lampreyPetromyzon marinus

  • A. E. Romero-Herrera
  • N. Lieska
  • S. Nasser
Article

Summary

Myoglobin has been identified in the myocardium of the lampreyPetromyzon marinus, one of the most primitive of all vertebrates. This protein was isolated by ammonium sulphate fractionation and purified by successive chromatography on Ultrogel AcA 54, DEAE-Sephadex and CM-23 cellulose. The molecule differs substantially from the monomeric hemoglobins found in the lamprey as evidenced by its elution profile on DEAE-Sephadex and the fingerprint pattern of its enzymically-produced peptides. The functional significance of this protein in Agnatha is discussed.

Key words

Myoglobin Agnatha Lamprey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, R., Crocker, C. (1952). Biochim. Biophys. Acta9, 704–705Google Scholar
  2. Baglioni, C. (1961). Biochim. Biophys. Acta48, 392–396Google Scholar
  3. Clegg, J.B., Naughton, M.A., Weatherall, D.J. (1966). J. Mol. Biol.19, 91–108Google Scholar
  4. Dayhoff, M.O. (1972). Atlas of protein sequence and structure, Vol. 5. The national biomedical research foundation, Silver Spring, MD. ibid Suppl. 1 (1973); ibid Suppl.2 (1976)Google Scholar
  5. Fujiki, H., Braunitzer, G. (1969). Naturwiss.56, 322–323Google Scholar
  6. Hendrickson, W.A., Love, W.E. (1971). Nature232, 197–203Google Scholar
  7. Huisman, T.H.J., Dozy, A.M. (1965). J. Chromat.19, 160–169Google Scholar
  8. Ingram, V.M. (1958). Biochim. Biophys. Acta28, 539–545Google Scholar
  9. Ingram, V.M., Stretton, A.O.W. (1962). Biochim. Biophys. Acta62, 456–474Google Scholar
  10. Jepson, J.B., Smith, I. (1953). Nature172, 1100–1101Google Scholar
  11. Jones, R.T. (1964). Cold Spring Harbor Symp. Quant. Biol.29, 297–308Google Scholar
  12. Li, S.L., Riggs, A. (1970). J. Biol. Chem.245, 6149–6169Google Scholar
  13. Oštádal, B., Schiebler, T.H. (1971). Z. Anat. Entwickl. Gesch.134, 101–110Google Scholar
  14. Paléus, S., Schuchhardt, S., Lübbers, D.W. (1968). Pflügers Archiv.299, 252–260Google Scholar
  15. Perutz, M.F. (1970). Nature228, 726–734Google Scholar
  16. Romero-Herrera, A.E., Lehmann, H., Joysey, K.A., Friday, A.E. (1978). Phil. Trans. Roy. Soc. B.283, 61–163Google Scholar
  17. Rumen, N.M., Love, W.E. (1963). Arch. Biochem. Biophys.103, 24–35Google Scholar
  18. Sanger, F., Tuppy, H. (1951). Biochem. J.49, 463–481Google Scholar
  19. Sick, K., Beale, D., Irvine, G., Lehmann, H., Goodall, P.T., MacDougall, S. (1967). Biochim. Biophys. Acta140, 231–242Google Scholar
  20. Smith, I. (1953). Nature171, 43–44Google Scholar
  21. Smith, I., Seakins, J.W.T., Dayman, J. (1969). In: Chromatographic and electrophoretic techniques, Smith, I., ed. Vol. 1, pp. 149–150, London: HeinemanGoogle Scholar
  22. Toennies, G., Kolb, J.J. (1951). Anal. Chem.23, 823–826Google Scholar
  23. Vobořil, Z., Schiebler, T.H. (1970). Z. Anat. Entwickl. Gesch.130, 1–8Google Scholar
  24. Wittenberg, J.B. (1970). Physiol. Rev.50, 559–635Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • A. E. Romero-Herrera
    • 1
  • N. Lieska
    • 1
  • S. Nasser
    • 1
  1. 1.Department of AnatomyWayne State University School of MedicineDetroitUSA

Personalised recommendations