Skip to main content
Log in

Two types of amino acid substitutions in protein evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The frequency of amino acid substitutions, relative to the frequency expected by chance, decreases linearly with the increase in physico-chemical differences between amino acid pairs involved in a substitution. This correlation does not apply to abnormal human hemoglobins. Since abnormal hemoglobins mostly reflect the process of mutation rather than selection, the correlation manifest during protein evolution between substitution frequency and physico-chemical difference in amino acids can be attributed to natural selection. Outside of ‘abnormal’ proteins, the correlation also does not apply to certain regions of proteins characterized by rapid rates of substitution. In these cases again, except for the largest physico-chemical differences between amino acid pairs, the substitution frequencies seem to be independent of the physico-chemical parameters. The limination of the substituents involving the largest physicochemical differences can once more be attributed to natural selection. For smaller physico-chemical differences, natural selection, if it is operating in the polypeptide regions, must be based on parameters other than those examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, A.C. (1954), British Medical Journal1, 290

    Google Scholar 

  • Barker, W.C., McLanghlin, P.L., Dayhoff, M.O. (1972), Evolution of a complex system: The immunoglobulins, In: Atlas of protein sequence and structure, M.O. Dayhoff ed., pp. 31–40, Maryland: National Biomedical Research Foundation

    Google Scholar 

  • Clarke, B. (1970), Nature (Lond.),228, 159–160

    Google Scholar 

  • Dayhoff, M.O., Eck, R.V., Park, C.M., (1972a), A model of evolutionary change in proteins, In: Atlas of protein sequence and structure, M.O. Dayhoff ed., pp. 89–100, Maryland: National Biomedical Research Foundation

    Google Scholar 

  • Dayhoff, M.O., Park, C.M., McLaughlin, P.J., (1972b), Building a phylogenetic tree: Cytochrome c., In: Atlas of protein sequence and structure, M.O. Dayhoff ed., pp. 7–16, Maryland: National Biomedical Research Foundation

    Google Scholar 

  • Dayhoff, M.O. Hunt, L.T., McLaughlin, P.J., Jones, D.D. (1972c). Gene duplication in evolution: The globin. In: Atlas of protein sequence and structure. M.O. Dayhoff ed., pp. 17–30. Maryland: National Biomedical Research Foundation.

    Google Scholar 

  • Dayhoff, M.O., Hunt, L.T., McLaughlin, P.J., Barker, W.C. (1972d). Data section. In: Atlas of protein sequence and structure. M.O. Dayhoff ed., pp. D-87–D-98. pp. D-173–D-228. Maryland: National Biomedical Research Foundation

    Google Scholar 

  • Epstein, C.J. (1967). Nature (Lond.)215, 335–359

    Google Scholar 

  • Fitch, W.H. (1966). J. Mol. Biol.10, 9–16

    Google Scholar 

  • Fitch, W.H. (1967). J. Mol. Biol.26, 499–507

    Google Scholar 

  • Fitch, W.M., Markowitz, E. (1970). Biochemical Genetics4, 579–593

    Google Scholar 

  • Goodman, M., Moore, G.W. (1977). J. Mol. Evol.10, 7–47

    Google Scholar 

  • Grantham, R. (1974). Science185, 862–864

    Google Scholar 

  • Hasegawa, M., Yano, T. (1975). Viva Origino4, 11–18 (in Japanese)

    Google Scholar 

  • Hayashi, A. (1975). Abnormal hemoglobin. In: Gendai Seibutu Kagaku, Vol. 16, Taisha Izyo, U. Yamamura ed., pp. 1–41 (in Japanese), Tokyo: Iwanami publishing company

    Google Scholar 

  • International Hemoglobin Information Center (1976). R.N. Wtightstone, director, Medical College of Georgia

  • Kimura, M., Ohta, T. (1974). Proc. Nat. Acad. Sci. USA71, 2848–2852

    Google Scholar 

  • Lehmann, H., Huntsman, R.G. (1974). Unstable haemoglobins and haemoglobins with altered oxygen affinity. In: Man's Haemoglobins. pp. 217–235, Amsterdam, Oxford: North-Holland publishing company

    Google Scholar 

  • McLachlan, A.D. (1971). J. Mol. Biol.61, 409–417

    Google Scholar 

  • Padlan, E.A. (1977). Quant. Rev. Biophys.10, 35–65

    Google Scholar 

  • Padlan, E.A., Davies, D.R. (1975). Proc. Nat. Acad. Sci. USA72, 819–823

    Google Scholar 

  • Perutz, M.F., Lehmann, H. (1968). Nature219, 902–909

    Google Scholar 

  • Poljak, R.J., Amzel, L.M., Phizackerley, R.P. (1976). Prog. Biophys. Molec. Biol.31, 67–93

    Google Scholar 

  • Romero-Herrera, A.E., Lehmann, H., Joysey, K.A., Friday, A.E. (1973). Nature246, 389–395

    Google Scholar 

  • Sneath, P.H.A. (1966). J. Theor. Biol.12, 157–195

    Google Scholar 

  • Vogel, F., Kopun, F. (1977). J. Mol. Evol.9, 159–180

    Google Scholar 

  • Vogel, F. (1972). J. Mol. Evol.1, 334–367

    Google Scholar 

  • Vogel. F., Rohrborn, G. (1966). Nature210, 116–117

    Google Scholar 

  • Zuckerkandl, E. (1975). J. Mol. Evol.7, 1–57

    Google Scholar 

  • Zuckerkandl, E., Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In: Evolving genes and proteins. V. Bryson and H.J. Vogel eds., pp. 97–116, New York: Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyata, T., Miyazawa, S. & Yasunaga, T. Two types of amino acid substitutions in protein evolution. J Mol Evol 12, 219–236 (1979). https://doi.org/10.1007/BF01732340

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732340

Key words

Navigation