Journal of Molecular Evolution

, Volume 12, Issue 3, pp 219–236

Two types of amino acid substitutions in protein evolution

  • Takashi Miyata
  • Sanzo Miyazawa
  • Teruo Yasunaga
Article

Summary

The frequency of amino acid substitutions, relative to the frequency expected by chance, decreases linearly with the increase in physico-chemical differences between amino acid pairs involved in a substitution. This correlation does not apply to abnormal human hemoglobins. Since abnormal hemoglobins mostly reflect the process of mutation rather than selection, the correlation manifest during protein evolution between substitution frequency and physico-chemical difference in amino acids can be attributed to natural selection. Outside of ‘abnormal’ proteins, the correlation also does not apply to certain regions of proteins characterized by rapid rates of substitution. In these cases again, except for the largest physico-chemical differences between amino acid pairs, the substitution frequencies seem to be independent of the physico-chemical parameters. The limination of the substituents involving the largest physicochemical differences can once more be attributed to natural selection. For smaller physico-chemical differences, natural selection, if it is operating in the polypeptide regions, must be based on parameters other than those examined.

Key words

Amino acid substitution Physico-chemical difference Conservative Low-constraint Protein evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, A.C. (1954), British Medical Journal1, 290Google Scholar
  2. Barker, W.C., McLanghlin, P.L., Dayhoff, M.O. (1972), Evolution of a complex system: The immunoglobulins, In: Atlas of protein sequence and structure, M.O. Dayhoff ed., pp. 31–40, Maryland: National Biomedical Research FoundationGoogle Scholar
  3. Clarke, B. (1970), Nature (Lond.),228, 159–160Google Scholar
  4. Dayhoff, M.O., Eck, R.V., Park, C.M., (1972a), A model of evolutionary change in proteins, In: Atlas of protein sequence and structure, M.O. Dayhoff ed., pp. 89–100, Maryland: National Biomedical Research FoundationGoogle Scholar
  5. Dayhoff, M.O., Park, C.M., McLaughlin, P.J., (1972b), Building a phylogenetic tree: Cytochrome c., In: Atlas of protein sequence and structure, M.O. Dayhoff ed., pp. 7–16, Maryland: National Biomedical Research FoundationGoogle Scholar
  6. Dayhoff, M.O. Hunt, L.T., McLaughlin, P.J., Jones, D.D. (1972c). Gene duplication in evolution: The globin. In: Atlas of protein sequence and structure. M.O. Dayhoff ed., pp. 17–30. Maryland: National Biomedical Research Foundation.Google Scholar
  7. Dayhoff, M.O., Hunt, L.T., McLaughlin, P.J., Barker, W.C. (1972d). Data section. In: Atlas of protein sequence and structure. M.O. Dayhoff ed., pp. D-87–D-98. pp. D-173–D-228. Maryland: National Biomedical Research FoundationGoogle Scholar
  8. Epstein, C.J. (1967). Nature (Lond.)215, 335–359Google Scholar
  9. Fitch, W.H. (1966). J. Mol. Biol.10, 9–16Google Scholar
  10. Fitch, W.H. (1967). J. Mol. Biol.26, 499–507Google Scholar
  11. Fitch, W.M., Markowitz, E. (1970). Biochemical Genetics4, 579–593Google Scholar
  12. Goodman, M., Moore, G.W. (1977). J. Mol. Evol.10, 7–47Google Scholar
  13. Grantham, R. (1974). Science185, 862–864Google Scholar
  14. Hasegawa, M., Yano, T. (1975). Viva Origino4, 11–18 (in Japanese)Google Scholar
  15. Hayashi, A. (1975). Abnormal hemoglobin. In: Gendai Seibutu Kagaku, Vol. 16, Taisha Izyo, U. Yamamura ed., pp. 1–41 (in Japanese), Tokyo: Iwanami publishing companyGoogle Scholar
  16. International Hemoglobin Information Center (1976). R.N. Wtightstone, director, Medical College of GeorgiaGoogle Scholar
  17. Kimura, M., Ohta, T. (1974). Proc. Nat. Acad. Sci. USA71, 2848–2852Google Scholar
  18. Lehmann, H., Huntsman, R.G. (1974). Unstable haemoglobins and haemoglobins with altered oxygen affinity. In: Man's Haemoglobins. pp. 217–235, Amsterdam, Oxford: North-Holland publishing companyGoogle Scholar
  19. McLachlan, A.D. (1971). J. Mol. Biol.61, 409–417Google Scholar
  20. Padlan, E.A. (1977). Quant. Rev. Biophys.10, 35–65Google Scholar
  21. Padlan, E.A., Davies, D.R. (1975). Proc. Nat. Acad. Sci. USA72, 819–823Google Scholar
  22. Perutz, M.F., Lehmann, H. (1968). Nature219, 902–909Google Scholar
  23. Poljak, R.J., Amzel, L.M., Phizackerley, R.P. (1976). Prog. Biophys. Molec. Biol.31, 67–93Google Scholar
  24. Romero-Herrera, A.E., Lehmann, H., Joysey, K.A., Friday, A.E. (1973). Nature246, 389–395Google Scholar
  25. Sneath, P.H.A. (1966). J. Theor. Biol.12, 157–195Google Scholar
  26. Vogel, F., Kopun, F. (1977). J. Mol. Evol.9, 159–180Google Scholar
  27. Vogel, F. (1972). J. Mol. Evol.1, 334–367Google Scholar
  28. Vogel. F., Rohrborn, G. (1966). Nature210, 116–117Google Scholar
  29. Zuckerkandl, E. (1975). J. Mol. Evol.7, 1–57Google Scholar
  30. Zuckerkandl, E., Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In: Evolving genes and proteins. V. Bryson and H.J. Vogel eds., pp. 97–116, New York: Academic PressGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Takashi Miyata
    • 1
  • Sanzo Miyazawa
    • 1
  • Teruo Yasunaga
    • 1
  1. 1.Department of BiologyKyushu UniversityFukuokaJapan

Personalised recommendations