Journal of Molecular Evolution

, Volume 5, Issue 4, pp 291–305

Immunological comparison of azurins of known amino acid sequence

Dependence of Cross-Reactivity upon Sequence Resemblance
  • A. B. Champion
  • K. L. Soderberg
  • A. C. Wilson
  • R. P. Ambler
Article

Summary

To examine further the dependence of immunological cross-reactivity on sequence resemblance among proteins, we carried out micro-complement fixation studies with rabbit antisera to bacterial azurins of known amino acid sequence. There is a strong correlation (r = 0.9) between number of amino acid substitutions and degree of antigenic difference (immunological distance) among these azurins. The antigenic effects of amino acid substitutions are thus approximately equal and approximately additive. Similar observations and inferences were made before with a series of bird lysozymes. Indeed, the same approximate relationship between immunological distance (y) and percent difference in amino acid sequence (x) holds for both azurins and lysozymes, namely y ≃ 5x.

An explanation is given for the dependence of immunological cross-reactivity on sequence resemblance among proteins. This entails reviewing evidence regarding the nature and number of antigenic sites on globular protein antigens as well as evidence for the existence of evolutionary biases against substitutions that are internal or cause large conformational changes. The explanation we give may apply only to those naturally occurring, globular, monomeric, isofunctional proteins whose sequences differ substantially from that of any rabbit protein.

Key words

Micro-Complement Fixation Immunodiffusion Haemoglobin Cytochrome c Lysozyme Protein Evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambler, R.P. (1971). In: Recent developments in the chemical study of protein structures, A. Previero, J.-F. Pechere, M.-A. Coletti-Previero, eds., p. 289. Paris: InsermGoogle Scholar
  2. Ambler, R.P., Wynn, M. (1973). Biochem.J. 131, 485Google Scholar
  3. Antonini, E., Finazzi-Agro, A., Avigliano, L., Guerriere, P., Rotilio, G., Mondovi, B. (1970). J.Biol.Chem. 245, 4847Google Scholar
  4. Arnheim, N., Wilson, A.C. (1967). J.Biol.Chem. 242, 3951Google Scholar
  5. Arnon, R. (1974). In: Lysozyme, E.F. Osserman, R.E. Canfield, S.Beychok, eds., p. 105. New York: Academic PressGoogle Scholar
  6. Atassi, M.Z. (1973). Specific receptors of antibodies, antigen, and cells. 3rd Int.Convoc.Immunol., p. 118. Basel: KargerGoogle Scholar
  7. Banyard, S.H., Blake, C.C.F., Swan, I.D.A. (1974). In: Lysozyme, E.F. Osserman, R.E. Canfield, S. Beychok, eds., p. 71. New York: Academic PressGoogle Scholar
  8. Benjamin, D.C., Weigle, W.O. (1971). Immunochemistry 8, 1087Google Scholar
  9. Blake, C.C.F., Swan, I.D.A. (1971). Nature New Biol. 232, 12Google Scholar
  10. Bolton, W., Perutz, M.F. (1970). Nature 228, 551Google Scholar
  11. Champion, A.B., Prager, E.M., Wachter, D., Wilson, A.C. (1974). In: Biochemical and immunological taxonomy of animals, C.A. Wright, ed., p. 397. London: Academic PressGoogle Scholar
  12. Cocks, G.T., Wilson, A.C. (1969). Sci. 164, 188Google Scholar
  13. Dayhoff, M.O., ed. (1972). Atlas of protein sequence and structure, Vol.5, D47. Silver Spring, Maryland: The National Biomedical Research FoundationGoogle Scholar
  14. Dayhoff, M.O., ed. (1973). Atlas of protein sequence and structure, Vol.5, Suppl.I, p. 521. Silver Spring, Maryland: The National Biomedical Research FoundationGoogle Scholar
  15. Dickerson, R.E., Takano, T., Eisenberg, D., Kallai, O.B., Samson, L., Cooper, A., Margoliash, E. (1971). J.Biol.Chem. 264, 1511Google Scholar
  16. Dietrich, F.M. (1968). Immunochemistry 5, 329Google Scholar
  17. Fainaru, M., Wilson, A.C., Arnon, R. (1974). J.Mol.Biol. 84, 635Google Scholar
  18. Gorman, G.C., Wilson, A.C., Nakanishi, M. (1971). Syst.Zool. 20, 167Google Scholar
  19. Kimura, M., Ohta, T. (1973). Genet. 73 (Suppl.), 19Google Scholar
  20. Lapresle, C., Kaminski, M., Tanner, C.E. (1959). J.Immunol. 82, 94Google Scholar
  21. Lee, B., Richards, F.M. (1971). J.Mol.Biol. 55, 379Google Scholar
  22. Li, S.L., Yanofsky, C. (1973). J.Biol.Chem. 248, 1830Google Scholar
  23. London, J., Kline, K. (1973). Bacteriol.Rev. 37, 453Google Scholar
  24. Margoliash, E., Nisonoff, A., Reichlin, M. (1970). J.Biol.Chem. 245, 931Google Scholar
  25. Munoz, J. (1971). In: Methods in immunology and immunochemistry, C.A. Williams, M.W. Chase, eds., Vol.III, p. 146. New York: Academic PressGoogle Scholar
  26. Murphy, T.M., Mills, S.E. (1969). J.Bacteriol. 97, 1310Google Scholar
  27. Nisonoff, A., Reichlin, M., Margoliash, E. (1970). J.Biol.Chem. 245, 940Google Scholar
  28. Noble, R.W., Reichlin, M., Gibson, Q.H. (1969). J.Biol.Chem. 244, 2403Google Scholar
  29. Noble, R.W., Reichlin, M., Schreiber, R.D. (1972). Biochem. 11, 3326Google Scholar
  30. Nockolds, C.E., Kretsinger, R.H., Coffee, C.J., Bradshaw, R.A. (1972). Proc.Nat.Acad.Sci. (USA) 69, 581Google Scholar
  31. Ouchterlony, O. (1958). Progr.Allergy 5, 1Google Scholar
  32. Pecht, I., Rosen, P. (1973). Biochem.Biophys.Res.Commun. 50, 853Google Scholar
  33. Phillips, N.I., Jenness, R., Kalan, E.B. (1968). J.Immunol. 100, 307Google Scholar
  34. Prager, E.M., Wilson, A.C. (1971a). J.Biol.Chem. 246, 5987Google Scholar
  35. Prager, E.M., Wilson, A.C. (1971b). J.Biol.Chem. 246, 7010Google Scholar
  36. Prager, E.M., Arnheim, N., Mross, G.A., Wilson, A.C. (1972). J.Biol. Chem. 247, 2905Google Scholar
  37. Prager, E.M., Wilson, A.C., Arnheim, N. (1974). J.Biol.Chem. 249, 7295Google Scholar
  38. Prager, E.M., Fainaru, M., Wilson, A.C., Arnon, R. (1974). Immunochemistry 11, 153Google Scholar
  39. Reichlin, M., Hay, M., Levine, L. (1964). Immunochemistry 1, 21Google Scholar
  40. Reichlin, M. (1970). Immunochemistry 7, 15Google Scholar
  41. Reichlin, M. (1972). J.Mol.Biol. 64, 485Google Scholar
  42. Reichlin, M. (1974). Immunochemistry 11, 21Google Scholar
  43. Reichlin, M. (1975). Advan.Immunol. 20, 71Google Scholar
  44. Romero-Herrera, A.E., Lehmann, H., Joysey, K.A., Friday, A.E. (1973). Nature 246, 389Google Scholar
  45. Sarich, V.M., Wilson, A.C. (1966). Sci. 154, 1563Google Scholar
  46. Sela, M. (1969). Sci. 166, 1365Google Scholar
  47. Smith, L., Davies, H.C., Reichlin, M., Margoliash, E. (1973). J.Biol. Chem. 248, 237Google Scholar
  48. Stanier, R.Y., Palleroni, N.J., Doudoroff, M. (1966). J.Gener.Microbiol. 43, 159Google Scholar
  49. Tashjian, A.H., Jr., Levine, L., Wilhelmi, A.E. (1965). Endocrinol. 77, 563Google Scholar
  50. Whiteside, T.L., DeSiervo, A.J., Salton, M.R.J. (1971). J.Bacteriol. 105, 957Google Scholar
  51. Wilson, A.C., Prager, E.M. (1974). In: Lysozyme, E.F. Osserman, R.E. Canfield, S. Beychok, eds., p. 127. New York: Academic PressGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • A. B. Champion
    • 1
  • K. L. Soderberg
    • 1
  • A. C. Wilson
    • 1
  • R. P. Ambler
    • 2
  1. 1.Department of Biochemistry and Department of Bacteriology and ImmunologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Molecular BiologyUniversity of EdinburghUSA

Personalised recommendations