Advertisement

Journal of Molecular Evolution

, Volume 7, Issue 1, pp 87–100 | Cite as

The history of inorganic nitrogen in the biosphere

  • E. Broda
Synthesis

Summary

When in the primeval atmosphere ammonia approached exhaustion, bacteria resembling clostridia developed mechanisms for nitrogen fixation. The fixation was continued by the photosynthetic bacteria. In the later, oxidizing, atmosphere the combined activities of the nitrificants and the denitrificants could lead to a large-scale cyclic regeneration of free nitrogen. The possibility of a descent of the nitrificants from hypothetical photosynthetic bacteria, which used ammonia as electron donor, is discussed.

The anoxygenic atmosphere contained no nitrate, and therefore neither nitrate fermentation nor nitrate respiration were precursors of aerobic respiration. This evolved from photosynthesis. In nitrate fermentation, nitrate serves only as an incidental electron acceptor; this process is merely an evolutionary sideline. Nitrate respiration evolved from aerobic respiration.

While in present conditions the reaction of nitrogen with oxygen and water to give nitrate is exergonic and possibly occurs at a low rate, the antagonistic action of the denitrificants maintains the stationary concentrations of nitrogen and oxygen in the air.

Key words

Nitrification Denitrification Nitrate Respiration Nitrate Fermentation Nitrogen Fixation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. (1966). Proc.Nat.Acad.Sci. Wash. 55, 1365Google Scholar
  2. Aleem, M.I.H. (1970). Ann.Rev.Plant.Physiol. 21, 67Google Scholar
  3. Bada, J.L., Miller, S.L. (1968). Science 159, 423Google Scholar
  4. Boltzmann, L. (1886). See Boltzmann, L. (1905), Populäre Schriften, Leipzig: J.A. BarthGoogle Scholar
  5. Brillouin, L. (1949). Am.Sci. 37, 554Google Scholar
  6. Broda, E. (1970). Progr.Biophys.Mol.Biol. 21, 146Google Scholar
  7. Broda, E. (1975a). Origin of Life 6, 247Google Scholar
  8. Broda, E. (1975b). The evolution of bioenergetic processes. Oxford: Pergamon PressGoogle Scholar
  9. Burton, M. (1957). Appendix to: Krebs, H.A., Kornberg, H.L., Energy transformation in living matter. Berlin-Göttingen-Heidelberg:SpringerGoogle Scholar
  10. Claridge, G.G., Campbell, I.B. (1968). Nature 217, 428Google Scholar
  11. Delwiche, C.C. (1970). Scient.American 223, 136Google Scholar
  12. Dolin, M.I. (1961). In: The bacteria, Vol.2, I.C. Gunsalus, R.Y. Stanier, eds. New York: Academic PressGoogle Scholar
  13. Egami, F. (1957). Svensk Kem.Tidsk. 69, 652Google Scholar
  14. Egami, F. (1973). Z.Allgem.Mikrobiol. 13, 177Google Scholar
  15. Egami, F. (1974). Origin of Life 5, 405Google Scholar
  16. Eugster, H.P., Munoz, J. (1966). Science 151, 683Google Scholar
  17. Ferris, J.P., Nicodem, D.E. (1972). Nature 238, 268Google Scholar
  18. Gunsalus, I.C., Umbreit, W.W. (1945). J.Bact. 49, 347Google Scholar
  19. Hall, J.B. (1971). J.Theoret.Biol. 30, 429Google Scholar
  20. Hall, J.B. (1973). Space Life Sci. 4, 204Google Scholar
  21. Hardy, R.W.F., Havelka, V.D. (1975). Science 188, 633Google Scholar
  22. Hasan, S.M., Hall, J.B. (1975). J.General Microbiol. 87, 120Google Scholar
  23. Holland, H.D. (1962). In: Petrological studies, A.E. Engel, H. James, B.F. Leonard, eds. New York: Geol.Soc.Am.Google Scholar
  24. Hutchinson, G.F. (1944). Am.Sci. 32, 178Google Scholar
  25. Hutchinson, G.F. (1954). In: The earth as a planet, G.P.Kuiper, ed. Chicago: Chicago University PressGoogle Scholar
  26. Johnston, H. (1972). Proc.Nat.Acad.Sci. Wash. 69, 2369Google Scholar
  27. Lewis, G.N., Randall, M. (1923). Chemical thermodynamics, quoted after the German edition, Vienna 1927. New York: McGraw HillGoogle Scholar
  28. Lwoff, A. (1932). Quoted by Hutchinson (1944)Google Scholar
  29. Margulis, L. (1970). Origin of eukaryotic cells. New Haven:Yale Univ.PressGoogle Scholar
  30. Miller, S.L., Urey, H.C. (1959). Science 130, 245Google Scholar
  31. Mueller, G. (1968). Nature 219, 1131Google Scholar
  32. Nason, A. (1962). Bacteriol.Rev. 26, 16Google Scholar
  33. Ottow, J.C.G., Glathe, H. (1971). Soil Biol.Biochem. 3, 43Google Scholar
  34. Payne, W.J. (1973). Bacteriol.Rev. 37, 409Google Scholar
  35. Piper, D.Z., Codispoti, L.A. (1975). Science 188, 15Google Scholar
  36. Rasool, S.I. (1968). Science 157, 1466Google Scholar
  37. Renner, E.D., Becker, G.E. (1970). J.Bacteriol. 101, 821Google Scholar
  38. Robbins, W.J. (1937). Am.J.Botan. 24, 243Google Scholar
  39. Rubey, W.W. (1955). Geol.Soc.Am.Spec. Paper 62, 631Google Scholar
  40. Sato, R. (1956). In: Inorganic nitrogen metabolism, W.D. McElroy, B.H. Glass, eds. Baltimore: The Johns Hopkins PressGoogle Scholar
  41. Schlegel, H.G. (1972). Allgemeine Mikrobiologie. Stuttgart: ThiemeGoogle Scholar
  42. Schlegel, H.G. (1974). Tellus 26, 1Google Scholar
  43. Schrödinger, E. (1945). What is life? Cambridge: Cambridge Univ.PressGoogle Scholar
  44. Sillén, L.G. (1966a). Ark.Kem. 25, 159Google Scholar
  45. Sillén, L.G. (1966b). Tellus 18, 198Google Scholar
  46. Sillén, L.G. (1967). Science 156, 1189Google Scholar
  47. Stevenson, F.J. (1972). In: The encyclopedia of geochemistry and environmental sciences, R.W. Fairbridge, ed. New York: Van NostrandGoogle Scholar
  48. Suzuki, I. (1974). Ann.Rev.Microbiol. 28, 85Google Scholar
  49. Takahashi, H., Taniguchi, S., Egami, F. (1963). In: Comparative biochemistry, Vol.5, M. Florkin, H. Mason, eds. New York: Academic PressGoogle Scholar
  50. Tuttle, J.H., Jannasch, H.W. (1973). J.Bacteriol. 115, 732Google Scholar
  51. Verhoeven, W. (1956). In: Inorganic phosphorus metabolism, W.D. McElroy, B.H. Glass, eds. Baltimore: The Johns Hopkins PressGoogle Scholar
  52. Vernadsky, W. (1934). Quoted by Hutchinson (1944)Google Scholar
  53. Winogradsky, W. (1949). Microbiologie du sol. Paris: MassonGoogle Scholar
  54. Wlotzka, F. (1961). Geochim.Cosmochim.Acta 24, 106Google Scholar
  55. Wlotzka, F. (1972). In: Handbook of geochemistry, Vol.II/3, K.H.Wedepohl, ed. Berlin-Heidelberg-New York: SpringerGoogle Scholar
  56. Woods, D.D. (1938). Biochem.J. 32, 2000Google Scholar
  57. Yates, M.G., Jones, C.W. (1974). Advan.Microbiol.Physiol. 11, 97Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • E. Broda
    • 1
  1. 1.Institut für Physikalische ChemieUniversität WienWienAustria

Personalised recommendations