Advertisement

Journal of Molecular Evolution

, Volume 16, Issue 1, pp 23–36 | Cite as

Molecular evolution of mRNA: A method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application

  • Takashi Miyata
  • Teruo Yasunaga
Article

Summary

A method for estimating the evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences is presented. This method is applied to genes of øX174 and G4 genomes, histone genes andβ-globin genes, for which homologous nucleotide sequences are available for comparison to be made. It is shown that the rates of synonymous substitutions are quite uniform among the non-overlapping genes of øX174 and G4 and among histone genes H4, H2B, H3 and H2A. A comparison between øX174 and G4 reveals that, in the overlapping segments of the A-gene, the rate of synonymous substitution is reduced more significantly than the rate of amino acid substitution relative to the corresponding rate in the nonoverlapping segment. It is also suggested that, in the coding regions surrounding the splicing points of intervening sequences ofβ-globin genes, there exist rigid secondary structures. It is in only these regions that theβ-globin genes show the slowing down of evolutionary rates of both synonymous and amino acid substitutions in the primate line.

Key words

Amino acid difference Synonymous difference Selective constraint mRNA evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dayhoff MO (1978) Atlas of protein sequence and structure, vol 5, suppl. 3, Na tional Biomedical Research Foundation, MarylandGoogle Scholar
  2. Dickerson RE (1971) J Mol Evol 1:26–45Google Scholar
  3. Efstratiadis A, Kafatos FC, Maniatis T (1977) Cell 10:571–585Google Scholar
  4. Fiers W, Contreras R, Duerinck F, Haegeman G, Merregaert J, Min-Jou W, Raeymaekers A, Volckaert G, Ysebaert M, Van de Kerckhove J, Nolf F, Van Mantagu M (1975) Nature 256:273–278Google Scholar
  5. Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min-Jou W, Molemans F, Raeymaekers A, Van den Berghu A, Volckaert G, Ysebaert M (1976) Nature 260:500–507Google Scholar
  6. Fitch WM, Langley CH (1976) Federation Proceedings 35:2092–2097Google Scholar
  7. Godson GN, Barrell BG, Staden R, Fiddes JC (1978) Nature 276:236–247Google Scholar
  8. Goodman M, Moore GW, Matsuda G (1975) Nature 253:603–608Google Scholar
  9. Goodman M, Moore GW, Barnabas J, Matsuda G (1974) J Mol Evol 3:1–48Google Scholar
  10. Grantham R (1978) FEBS Lett 95:1–11Google Scholar
  11. Grunstein M, Grunstein JE (1978) Cold Spring Harbor Symp Quant Biol 42:1083–1092Google Scholar
  12. Grunstein M, Schedl P, Kedes L (1976) J Mol Biol 104:351–369Google Scholar
  13. Heindell HC, Liu A, Paddock GV, Studnicka GM, Salser WA (1978) Cell 15:43–54Google Scholar
  14. Kafatos FC, Efstratiadis A, Forget BG, Weissman SM (1977) Proc Nat Acad Sci USA 74:5618–5622Google Scholar
  15. Kimura M (1977) Nature 267:275–276Google Scholar
  16. Kimura M, Ohta T (1974) Proc Nat Acad Sci USA 71:2848–2852Google Scholar
  17. Konkel DA, Tilghman SM, Leder P (1978) Cell 15:1125–1132Google Scholar
  18. Marrotta CA, Wilson JT, Forget BG, Weissman SM (1977) J Biol Chem 252:5040–5053Google Scholar
  19. Min-Jou W, Haegeman G, Ysebaert M, Fiers W (1972) Nature 237:82–88Google Scholar
  20. Min-Jou W, Fiers W (1976) J Mol Biol 106:1047–1060Google Scholar
  21. Miyata T, Yasunaga T (1978) Nature 272:532–535Google Scholar
  22. Miyata T, Miyazawa S, Yasunaga T (1979) J Mol Evol 12:219–236Google Scholar
  23. Nakanishi S, Inoue A, Kita T, Nakamura M, Chang ACY, Cohen SN, Numa S (1979) Nature 278:423–427Google Scholar
  24. Ohta T, Kimura M (1971) J Mol Evol 1:18–25Google Scholar
  25. Roberts JL, Seeburg PH, Shine J, Herbert E, Baxter JD, Goodman HM (1979) Proc Nat Acad Sci USA 76:2153–2157Google Scholar
  26. Romero-Herrera AE, Lehman H, Joysey KA, Friday AE (1973) Nature 246:389–395Google Scholar
  27. Salser W (1978) Cold Spring Harbor Symp Quant Biol 42:985–1002Google Scholar
  28. Salser W, Isaacson JS (1976) Prog Nucleic Acid Res 19:205–220Google Scholar
  29. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, Hutchison III CA, Slocombe PMS, Smith M (1977) Nature 265:689–695Google Scholar
  30. Sanger F, Coulson AR, Friedmann T, Air GM, Barrell BG, Brown NL, Fiddes JC, Hutchison III CA, Slocombe PM, Smith M (1978) J Mol Biol 125:225–246Google Scholar
  31. Schaffner W, Knuz G, Daetwyler H, Telford J, Smith HO, Birnstiel ML (1978) Cell 14:655–671Google Scholar
  32. Sures I, Lowry J, Kedes LH (1978) Cell 15:1033–1044Google Scholar
  33. Wilson AC, Carlson SS, White TJ (1977) Ann Rev Biochem 46:573–639Google Scholar
  34. Zuckerkandl E, Pauling L (1965) Evolving genes and proteins. Bryson V, Vogel HJ (eds) Academic Press, New York p 97Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Takashi Miyata
    • 1
  • Teruo Yasunaga
    • 1
  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan

Personalised recommendations