Chromosoma

, Volume 99, Issue 4, pp 260–266 | Cite as

Transcription of a satellite DNA on twoY chromosome loops ofDrosophila melanogaster

  • Silvia Bonaccorsi
  • Maurizio Gatti
  • Claudio Pisano
  • Allan Lohe
Article

Abstract

Primary spermatocyte nuclei ofDrosophila melanogaster exhibit three giant lampbrush-like loops formed by thekl-5, kl-3 andks-1 Y chromosome fertility factors. Detailed mapping of satellite DNA sequences along theY chromosome has recently shown that AAGAC satellite repeats are a significant component of thekl-5 andks-1 loop-forming regions. To determine whether these simple repeated sequences are transcribed on the loop structures we performed a series of DNARNA in situ hybridization experiments to fixed loop preparations using as a probe cloned AAGAC repeats. These experiments showed that the probe hybridizes with homologous transcripts specifically associated with thekl-5 andks-1 loops. These transcripts are detected at all stages of development of these two loops, do not appear to migrate to the cytoplasm and are degraded when loops disintegrate during the first meiotic prophase. Moreover, an examination of the testes revealed that the transcription of the AAGAC sequences is restricted to the loops of primary spermatocytes; the other cell types ofD. melanogaster spermatogenesis do not exhibit nuclear or cytoplasmic labeling. These experiments were confirmed by RNA blotting analysis which showed that transcription of the AAGAC sequences occurs in wild-type testes but not inX/O testes. The patterns of hybridization to the RNA blots indicated that the transcripts are highly heterogeneous in size, from large (migration at limiting mobility) to less than 1 kb. We discuss the possible function of the AAGAC satellite transcripts, in the light of the available information on theY chromosome loops ofD. melanogaster.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner M (1989)Drosophila: A laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  2. Bonaccorsi S, Pisano C, Puoti F, Gatti M (1988) Y chromosome loops inDrosophila melanogaster. Genetics 120:1015–1034Google Scholar
  3. Brahic M, Hasse AT (1978) Detection of viral sequences of low reiteration frequency by in situ hybridization. Proc Natl Acad Sci USA 75:6125–6129Google Scholar
  4. Bromley S, Gall JG (1987) Transcription of the histone loci on lampbrush chromosomes of the newtNotophthalmus viridescens. Chromosoma 95:396–402Google Scholar
  5. Brosseau GE (1960) Genetic analysis of the male fertility factors on the Y chromosome ofDrosophila melanogaster. Genetics 45:257–274Google Scholar
  6. Brutlag DL (1980) Molecular arrangement and evolution of heterochromatic DNA. Annu Rev Genet 14:121–144Google Scholar
  7. Diaz MO, Gall JG (1985) Giant readthrough transcription units at the histone loci on lampbrush chromosomes of the newtNotophthalmus. Chromosoma 92:243–253Google Scholar
  8. Diaz MO, Barsacchi-Pilone G, Mahon KA, Gall JG (1981) Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newtNotophthalmus. Cell 24:649–659Google Scholar
  9. Gatti M, Pimpinelli S (1983) Cytological and genetical analysis of the Y chromosome ofDrosophila melanogaster. Chromosoma 88:349–373Google Scholar
  10. Glätzer KH (1984) Preservation of nuclear RNP antigens in male germ cell development ofDrosophila hydei. Mol Gen Genet 196:236–243Google Scholar
  11. Hardy RW, Tokuyasu KT, Lindsley DL (1981) Analysis of spermatogenesis inDrosophila melanogaster bearing deletions for Ychromosome fertility genes. Chromosoma 88:593–617Google Scholar
  12. Hardy RW, Lindsley DL, Livak KJ, Lewis B, Siversten AL, Joslyn GL, Edwards J, Bonaccorsi S (1984) Cytogenetic analysis of a segment of the Y chromosome ofDrosophila melanogaster. Genetics 107:591–610Google Scholar
  13. Hareven D, Zuckerman M, Lifschytz E (1986) Origin and evolution of the transcribed repeated sequences of the Y chromosome lampbrush loops ofDrosophila hydei. Proc Natl Acad Sci USA 83:125–129Google Scholar
  14. Hazelrigg T, Fornili P, Kaufman TC (1982) A cytogenetic analysis of X-ray induced male steriles on the Y chromosome ofDrosophila melanogaster. Chromosoma 87:535–559Google Scholar
  15. Hennig W (1985) Y chromosome function and spermatogenesis inDrosophila hydei. Adv Genet 23:179–234Google Scholar
  16. Huijser P, Hennig W (1987) Ribosomal DNA-related sequences in a Y chromosomal lampbrush loop ofDrosophila hydei. Mol Gen Genet 206:441–451Google Scholar
  17. Hulsebos TJM, Hackstein JHP, Hennig W (1984) Lampbrush loopspecific protein ofDrosophila hydei. Proc Natl Acad Sci USA 81:3404–3408Google Scholar
  18. Kennison JA (1981) The genetical and cytological organization of the Y chromosome ofDrosophila melanogaster. Genetics 98:529–548Google Scholar
  19. Lifschytz E (1979) A procedure for the cloning and identification of Y specific middle repetitive sequences inDrosophila hydei. J Mol Biol 133:267–277Google Scholar
  20. Lifschytz E (1987) The developmental program of spermiogenesis inDrosophila: a genetic analysis. Int Rev Cytol 109:211–257Google Scholar
  21. Lifschytz E, Hareven D, Azriel A, Brodsley H (1983) DNA clones and RNA transcripts of four lampbrush loops from the Y chromosome ofDrosophila hydei. Cell 32:191–199Google Scholar
  22. Lindsley DL, Tokuyasu KT (1980) Spermatogenesis. In: Ashburner M, Wright TRF (eds) The genetics and biology ofDrosophila, vol 2d. Academic Press, New York, pp 225–294Google Scholar
  23. Lohe AR, Brutlag DL (1986) Multiplicity of satellite sequences inDrosophila melanogaster. Proc Natl Acad Sci USA 83:696–700Google Scholar
  24. Lohe AR, Roberts P (1988) Evolution of satellite DNA sequences inDrosophila. In: Verma R (ed) Molecular and structural aspects of heterochromatin. Cambridge University Press, pp 148–186Google Scholar
  25. Macgregor HC, Sessions SK (1986) The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: an evolutionary perspective. Philos Trans R Soc Lond [Biol] 312:243–259Google Scholar
  26. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  27. Peacock WJ, Lohe AR, Gerlach WL, Dunsmuir P, Dennis ES, Appels R (1977) Fine structure and evolution of DNA in heterochromatin. Cold Spring Harbor Symp Quant Biol 42:1121–1135Google Scholar
  28. Pukkila PJ (1975) Identification of the lampbrush chromosome loops which transcribe 5S ribosomal RNA inNotophthalmus (Triturus) viridescens. Chromosoma 53:71–89Google Scholar
  29. Thomas PS (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201–5205Google Scholar
  30. Trapitz P, Wlaschek M, Bunemann H (1988) Structure and function of Y chromosomal DNA. II. Analysis of lampbrush loop associated transcripts in nuclei of primary spermatocytes ofDrosophila hydei by in situ hybridization using asymmetric RNA probes of four different families of repetitive DNA. Chromosoma 96:159–170Google Scholar
  31. Tullis RH, Rubin H (1980) Calcium protects DNase I from proteinase K: a new method for the removal of contaminating RNase from DNase I. Anal Biochem 107:260–264Google Scholar
  32. Varley MH, Macgregor HC, Erba HP (1980a) Satellite DNA is transcribed on lampbrush chromosomes. Nature 283:686–688Google Scholar
  33. Varley MH, Macgregor HC, Nardi I, Andrews C, Erba HP (1980b) Cytological evidence of transcription of highly repeated DNA sequences during the lampbrush stage inTriturus cristatus carnifex. Chromosoma 80:289–307Google Scholar
  34. Vogt P, Hennig W (1986a) Molecular structure of the lampbrush loop nooses of the Y chromosome ofDrosophila hydei. I. The Y chromosome-specific repetitive DNA sequence family ay1 is dispersed in the loop DNA. Chromosoma 94:449–458Google Scholar
  35. Vogt P, Hennig W (1986b) Molecular structure of the lampbrush loop nooses of the Y chromosome ofDrosophila hydei. II. Non-Y-specific DNA sequences are a major constituent of the loop. Chromosoma 94:459:467Google Scholar
  36. Vogt P, Hennig W, Siegmund I (1982) Identification of cloned Y chromosomal DNA sequences from a lampbrush loop ofDrosophila hydei. Proc Natl Acad Sci USA 79:5132–5136Google Scholar
  37. Vogt P, Hennig W, ten Hacken D, Verbost P (1986) Evolution of Y chromosomal lampbrush loop DNA sequences ofDrosophila. Chromosoma 94:367–376Google Scholar
  38. Wu Z, Murphy C, Gall JG (1986) A transcribed satellite DNA from the bullfrogRana catesbeiana. Chromosoma 93:291–297Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Silvia Bonaccorsi
    • 1
  • Maurizio Gatti
    • 1
  • Claudio Pisano
    • 1
  • Allan Lohe
    • 2
  1. 1.Centro di Genetica Evoluzionistica del CNR e Dipartimento di Genetica e Biologia MolecolareUniversita' di Roma „La Sapienza“RomaItaly
  2. 2.Department of Genetics, School of MedicineCase Western Reserve UniversityClevelandUSA

Personalised recommendations